

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-07/0211 of 13 July 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer Bolt Anchor FBN II, FBN II R

Mechanical fastener for use in concrete

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

14 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 12/2019

ETA-07/0211 issued on 19 May 2016

European Technical Assessment ETA-07/0211

Page 2 of 14 | 13 July 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z61599.20 8.06.01-79/20

European Technical Assessment ETA-07/0211

Page 3 of 14 | 13 July 2020

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The fischer Bolt anchor FBN II and FBN II R is an anchor made of zinc plated, hot-dip galvanised or stainless steel which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 3, C 1
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 2
Displacements (static and quasi-static loading)	See Annex C 3
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed
Durability	See Annex B 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Z61599.20 8.06.01-79/20

European Technical Assessment ETA-07/0211

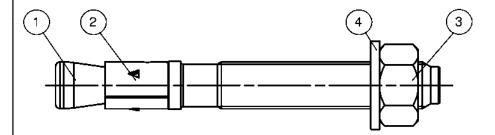
Page 4 of 14 | 13 July 2020

English translation prepared by DIBt

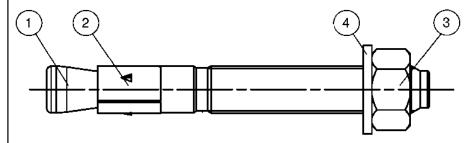
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

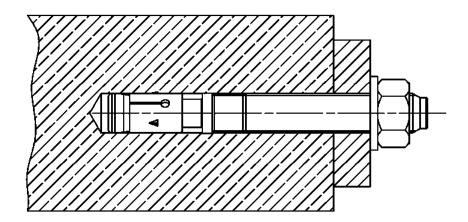
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 13 July 2020 by Deutsches Institut für Bautechnik


Dr.-Ing. Lars Eckfeldt p.p. Head of Department

*beglaubigt:*Baderschneider


Z61599.20 8.06.01-79/20


Cone bolt manufactured by cold - forming:

Cone bolt manufactured by turning:

- ① Cone bolt (cold formed or turned)
- ② Expansion sleeve
- 3 Hexagon nut
- Washer

(Fig. not to scale)

fischer Bolt Anchor FBN II, FBN II R	
Product description Installed condition	Annex A 1

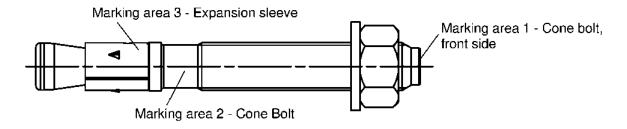

FBN II for use with standard and reduced anchorage depth (hef, sta and hef, red)

Table A2.1: Letter-code on marking area 1 and maximum thickness of fixture tfix [mm]:

marking		Α	В	C	D	Ε	F	G	Н	_	K	L	М	N	0	Φ	R	S	Τ	U	٧	W	Χ	Υ	Z
max. t _{fix} for h _{ef, sta}	M6-M20	5	10	15	20	25	30	35	40	45	50	60	70	80	90	100	120	140	160	180	200	250	300	350	400
	M8, M10	15	20	25	30	35	40	45	50	55	60	70	80	90	100	110	130	150	170	190	210	260	310	360	410
max. t _{fix}	M12, M16	20	25	30	35	40	45	50	55	60	65	75	85	95	105	115	135	155	175	195	215	265	315	365	415
for h _{ef. red}	M20	30	35	40	45	50	55	60	65	70	75	85	95	105	115	125	145	165	185	205	225	275	325	375	425

FBN II K for use with reduced anchorage depth only (hef, red):

Product label, example:

Brand | type of fastener placed at marking area 2 or 3

Thread size / max. thickness oft he fixture (t_{fix}) identification K for h_{ef, red} identification R or HDG placed on marking area 2

Table A2.2: Letter-code on marking area 1 and maximum thickness of fixture t_{fix} [mm]:

Markierung	-A-	-B-	-C-	-D-	-E-	-F-	-G-	-H-	- -	-K-	-L-	-M-	-N-	-0-	ń,	-R-	-S-	-T-	-U-	-V-	-W-	-X-	-Y-	-Z-
max. t _{fix} for h _{el, red} M8-M20	5	10	15	20	25	30	35	40	45	50	60	70	80	90	100	120	140	160	180	200	250	300	350	400

Identification for hef, red is the letter-code between 2 hyphen

(Fig. not to scale)

fischer Bolt Anchor FBN II, FBN II R

Product description

Product label and letter code

Annex A 2

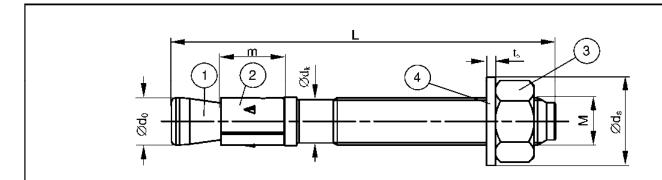


Table A3.1: Anchor dimensions [mm]

Dort	Designation		FBN II, FBN II R								
Part	Designation	Designation				M10	M12	M16	M20		
		М		M6	M8	M10	M12	M16	M20		
1	Cone bolt	Ø d₀		5,9	7,9	9,9	11,9	15,9	19,6		
		Ø d k	_ =	5,2	7,1	8,9	10,8	14,5	18,2		
2	Expansion sleeve	m	_	10	11,5	13,5	16,5	21,5	33,5		
3	Hexagon nut	SW	_	10	13	17	19	24	30		
	Washer	ts		1,0	1,4	1,8	2,3	2,7	2,7		
4	wasner	Ø d₅	- ≥	11,5	15	19	23	29	36		
Thislenges	of floring		≥	0	0	0	0	0	0		
Thickness of fixture		t _{fix}	<u></u>	200	200	250	300	400	500		
Longth of fo	atonor	L _{min}		45	56	71	86	120	139		
Length of fastener		L _{max} =		245	261	316	396	520	654		

(Fig. not to scale)

fischer Bolt Anchor FBN II, FBN II R	
Product description Dimensions	Annex A 3

Part	Designation	Material
1	Cone bolt	Cold form steel or free cutting steel
2	Expansion sleeve	Cold strip, EN 10139:2016 1)
3	Hexagon nut	Steel, property class min. 8, EN ISO 898-2:2012
4	Washer	Cold strip, EN 10139:2013

¹⁾ Optional stainless steel EN 10088:2014

Table A4.2: Materials FBN II HDG (hot-dip galvanised ≥ 50μm, ISO 10684: 2004 ²⁾)

Part	Designation	Material
1	Cone bolt	Cold form steel or free cutting steel
2	Expansion sleeve	Stainless steel EN 10088:2014
3	Hexagon nut	Steel, property class min. 8, EN ISO 898-2:2012
4	Washer	Cold strip, EN 10139:2016

 $^{^{1)}}$ Alternative method sherardized $\geq 50~\mu m,~EN~13811:2003$

Table A4.3: Materials FBN II R

Part	Designation	Material
1	Cone bolt	Stainless steel EN 10088:2014
2	Expansion sleeve	Stainless steel EN 10088:2014
3	Hexagon nut	Stainless steel EN 10088:2014 ISO 3506-2: 2009; property class min. 70
4	Washer	Stainless steel EN 10088:2014

fischer Bolt Anchor FBN II, FBN II R	
Product description Materials	Annex A 4

Specifications of intended use

Anchorages subject to:

fischer Bolt Anchor FBN II, FBN II R			M6 ¹⁾	M8 ¹⁾	M10	M12	M16	M20
231	Steel Zinc plated Hot-dip galvanized HDG			45	-	′		
<u>la</u>			_2)	✓				
Material	Stainless steel	R	/					
Static and	d quasi-static lo	oads				/		
Reduced anchorage depth			_2) /					
Uncracked concrete			·			1		

¹⁾ Use of FBN II 6 (gvz/R) and FBN II 8 (gvz/HDG/R) with h_{ef} = 30mm restricted to anchoring of structural components which are statically indeterminate

Base materials:

Reinforced or unreinforced normal concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

· Structures subject to dry internal conditions:

FBN II, FBN II HDG

 For all other conditions according to EN 1993-1-4:2015-10 corresponding to corrosion resistance class CRC III

FBN II R

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored.
 The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Design of fastenings according to EN 1992-4:2018 and TR 055

fischer Bolt Anchor FBN II, FBN II R	
Intended Use Specifications	Annex B 1

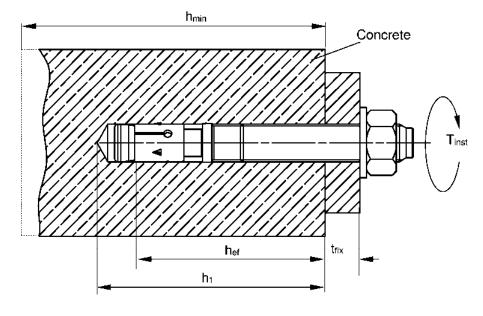

²⁾ Anchor type not part of the assessment

Table B2.1:	Installation	parameters
-------------	--------------	------------

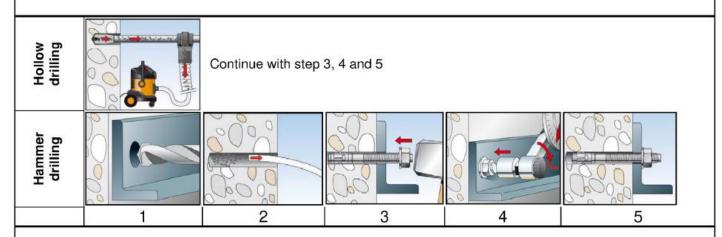
	-							
Type of anchor / size FBN II, F	BNIIR		М6	M8	M10	M12	M16	M20
Nominal drill hole diameter	$d_0 =$		6	8	10	12	16	20
Cutting diameter of drill bit	d _{cut} ≤		6,45	8,45	10,45	12,50	16,50	20,55
Standard anchorage depth	$h_{\text{ef,sta}} =$		30 ¹⁾	40	50	65	80	105
Reduced anchorage depth	$h_{\text{ef,red}} =$	_ _ [mm]	_2)	30 ¹⁾	40	50	65	80
Standard drill hole depth	h _{1,sta} ≥	,	40	56	68	85	104	135
Reduced drill hole depth	$h_{1,\text{red}} \geq$		_2)	46 ¹⁾	58	70	89	110
Diameter of clearance hole in the fixture	d₁ ≤		7	9	12	14	18	22
Required torque moment FBN II (zinc plated)			4	15	30	50	100	200
Required torque moment FBN II (hot-dip galvanized)	T _{inst} =	[Nm]	_3)	15	30	40	70	200
Required torque moment FBN II R	_		4	10	20	35	80	150

- Use restricted to anchoring of structural components which are statically indeterminate
- 2) No performance assessed
- 3) Anchor type not part of the assessment

 h_{ef} = Effective embedment depth t_{lix} = Thickness of the fixture

 h_1 = Depth of drill hole to deepest point h_{min} = Minimum thickness of concrete member

T_{inst} = Required setting torque


(Fig. not to scale)

fischer Bolt Anchor FBN II, FBN II R	
Intended Use Installation parameters	Annex B 2

Installation instructions

- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener
- Checking before placing the fastener to ensure that the strength class of the concrete in which the
 fastener is to be placed is in the range given and is not lower than that of the concrete to which the
 characteristic loads apply
- Check of concrete being well compacted, e.g. without significant voids
- · Hammer or hollow drilling
- Drill hole created perpendicular +/- 5° to concrete surface, positioning without damaging the reinforcement
- In case of aborted hole: new drilling at a minimum distance twice the depth of the aborted drill hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application

No.	Description							
1	Create drill hole with hammer drill	Create drill hole with hollow drill and vacuum cleaner						
2	Clean drill hole	-						
3	Set anchor							
4	Expand anchor with prescribed installation torque Tinst							
5	Fini	Finished installation						

	Types of drills
Hammer drill	2444400000
Hollow drill	Ī

fischer Bolt Anchor FBN II, FBN II R	
Intended Use Installation instructions	Annex B 3

Table C1.1: Characteristic values of **tension** resistance under static and quasi-static action

			M6	M8					
Type of anchor / size					M10	M12	M16	M20	
Steel failure for standard and reduc	ed ancho	rage depti	n FBN II						
Characteristic resistance FBN II	$N_{Rk,s}$	[kN]	8,3	16,5	27,2	41,6	77,9	107	
Partial factor	γMs ¹⁾	[-]	1,5	1,4	1,4	1,4	1,5	1,5	
Steel failure for standard and reduced anchorage depti			r FBN II F	1					
Characteristic resistance FBN II R	$N_{\text{Rk,s}}$	[kN]	10,6	16,5	27,2	41,6	78	111	
Partial factor	γ _{Ms} 1)	[-]	1,5	1,4	1,4	1,4	1,4	1,5	
Pullout failure for standard anchora	ige depth	FBN II, FB	NIR						
Characteristic resistance C20/25	$N_{Rk,p}$	[kN]	64)	12,5	17,4	25,8	35,2	52,9	
Pullout failure for reduced anchora	ge depth l	FBN II, FBI							
Characteristic resistance C20/25	$N_{Rk,p}$	[kN]	_5)	64)	12,5	17,4	25,8	35,2	
		C25/30				12			
		C30/37				22			
Increasing factors for N _{Rk,D}	116-	C35/45	1,32						
increasing factors for NHK,p	Ψο	C40/50	1,41						
		C45/55	1,50						
		C50/60	1,58						
Installation factor	γinst	[-]			1	,0			
Concrete cone and splitting failure		ard ancho		h FBN II,	FBN II R				
Effective anchorage depth	h _{ef, sta}	[mm]	30 ⁴⁾	40	50	65	80	105	
Factor for uncracked concrete	k _{ucr,N}	[-]				,0 ²⁾			
Spacing	Scr,N	_				ef, sta			
Edge distance	Ccr,N	– [mm]				Tef, sta			
Spacing (splitting failure)	Scr,sp	_ []	1304)	190	200	290	350	370	
Edge distance (splitting failure)	Ccr,sp		65 ⁴⁾	95	100	145	175	185	
Characteristic resistance to splitting N ⁰ Rk,sp [kN]						к,с, N Rk,р} ³⁾			
Concrete cone and splitting failure									
Effective anchorage depth	h _{ef, red}	[mm]	_5)	304)	40	50	65	80	
Factor for uncracked concrete	Kucr,N	[-]				,0 ²⁾			
Spacing	S _{cr} ,N	_			<u>3 h</u>	el, red			
Edge distance	C _{cr} ,N	– [mm]	E)	1 1004	1,5 h	lef, red			
Spacing (splitting failure)	S _{cr,sp}	<u>,</u>	_5)	1904)	200	290	350	370	
Edge distance (splitting failure)	C _{cr,sp}		_5)	95 ⁴⁾	100	145	175	185	

¹⁾ In absence of other national regulations

fischer Bolt Anchor FBN II, FBN II R	
Performances Characteristic values of tension resistance	Annex C 1

²⁾ Based on concrete strength as cylinder strength

³⁾ N⁰_{Rk,c} according to EN 1992-4:2018

⁴⁾ Use restricted to anchoring of structural components which are statically indeterminate

⁵⁾ No performance assessed

Type of anchor / size			M6	M8	M10	M12	M16	M20
Installation Factor γ _{inst} [-]					1	,0		
Steel failure without lever arm	for standard and	d reduced an	chorage	depth				
Characteristic registers	FBN II	FLA.II	6,02)	13,3	21,0	31,3	55,1	67
Characteristic resistance	FBN II R	s [kN]	5,32)	12,8	20,3	27,4	51	86
Steel failure with lever arm for								
Characteristic banding mamont	FBN II	[Mm]	9,42)	26,2	52,3	91,6	232,2	422
Characteristic bending moment	FBN II R	,s [Nm]	82)	26	52	85	216	454
Steel failure with lever arm for	reduced anchor	age depth						
Characteristic banding mamont	Characteristic bending moment FBN II R M ⁰ Rk,s	,s [Nm]	_3)	19,92)	45,9	90,0	226,9	349
Characteristic bending moment		RK,S [NIII]	_3)	21 ²⁾	47	85	216	353
Partial factor steel failure	γ _{Ms} ¹	, r1	1,25					
Factor for ductility	k_7	 [-]	1,0					
Concrete pryout failure for sta	ndard anchorag	e depth FBN	II, FBN II	R				
Factor for pryout failure	k ₈	[-]	1,4	1,8	2,1	2,3	2,3	2,3
Concrete pryout failure for red	luced anchorage	depth FBN I	i, FBN II	R				
Factor for pryout failure	k ₈	[-]	_3)	1,8	2,1	2,3	2,3	2,3
Concrete edge failure for stand	dard anchorage	depth FBN II,	FBN II F	ì				
Effective length of anchor	$I_{f,sta}$	[30 ²⁾	40	50	65	80	105
Effective diameter of anchor	d _{nom}	—— [mm]	6	8	10	12	16	20
Concrete edge failure for redu	ced anchorage o	lepth FBN II,	FBN II R					
Effective length of anchor	I _{f.red}	[mm]	_3)	30 ²⁾	40	50	65	80
Effective diameter of anchor	dnom	—— [mm]	_3)	8	10	12	16	20

fischer Bolt Anchor FBN II, FBN II R	
Performances Characteristic values of shear resistance	Annex C 2

In absence of other national regulations
 Use restricted to anchoring of structural components which are statically indeterminate
 No performance assessed

Table C3.1: Minimum thickness of concrete members, minimum spacing and minimum edge distance

Type of anchor / size FBN II, FBN II R			М6	M8	M10	M12	M16	M20	
Standard anchorage depth	Effective anchorage depth	h _{ef, sta}	- [mm]	30 ²⁾	40	50	65	80	105
	Minimum thickness of member	h _{min}		100	100	100	120	160	200
	Minimum spacing	Smin		40	40	50 (70 ¹⁾)	70	90 (120 ¹⁾)	120
	Minimum edge distance	Cmin		40	40 (45 ¹⁾)	50 (55 ¹⁾)	70	90 (80¹¹)	120
Reduced anchorage depth	Effective anchorage depth	h _{ef, red}	- [mm]	_3)	30 ²⁾	40	50	65	80
	Minimum thickness of member	h _{min}		_3)	100	100	100	120	160
	Minimum spacing	Smin		_3)	40 (50 ¹⁾)	50	70	90	120 (140 ¹⁾)
	Minimum edge distance	C min		_3)	40 (45 ¹⁾)	80	100	120	120

¹⁾ Values for FBN II R

Table C3.2: Displacements under static and quasi static tension loads

Type of anchor / size FBN II, FBN	II R		M6	M8	M10	M12	M16	M20		
Standard anchorage depth	h _{ef, sta}	[mm]	30	40	50	65	80	105		
Tension load C20/25	N	[kN]	2,8	6,1	8,5	12,6	17,2	25,8		
Displacements	δνο	_	1,9	0,6	0,9	1,5 (1,9 ¹⁾)	1,8	1,8 (2,0 ¹⁾)		
Displacements	δn∞	[mm]	3,1 (2,71)							
Reduced anchorage depth	h _{et, red}		-2)	30	40	50	65	80		
Tension load C20/25	N	[kN]	N] _2)	2,8	6,1	8,5	12,6	17,2		
Displacements	δνο	- [mm]	_ ′	0,4	0,7	0,7	0,9	1,0		
Displacements	δ _{N∞}	- finatil	1,6 (1,71)							

¹⁾ Values for FBN II R

Table C3.3: Displacements under static and quasi static shear loads

Type of anchor / size FBN II, FBN	IIIR		М6	M8	M10	M12	M16	M20
Shear load FBN II		[kN]	3,4	7,6	12,0	17,9	31,5	38,2
Displacements FBN II	δνο	— [mm]	0,7	1,5	1,6	2,0	3,0	2,6
Displacements FBN II	δν∞		1,1	2,3	2,4	3,0	4,5	3,9
Shear load FBN II R	٧	[kN]	3,0	7,3	11,6	15,7	29,1	49,0
Displacements FBN II R	δνο	— [mm]	1,5	1,4	2,1	2,6	2,7	4,6
Displacements FBN II N	δν∝		2,3	2,2	3,2	3,9	4,1	7,0

fischer Bolt Anchor FBN II, FBN II R	
Performances Minimum thickness of concrete members, minimum spacing and minimum edge distance Displacements due to tension and shear loads	Annex C 3

²⁾ Use restricted to anchoring of structural components which are statically indeterminate

³⁾ No performance assessed

²⁾ No performance assessed