

DICHIARAZIONE DI PRESTAZIONE

DoP 0268

per fischer ancorante con fascetta espandente FBN II HDG (ancorante meccanico per l'utilizzo nel calcestruzzo)

IT

Codice di identificazione unico del prodotto-tipo:
 DoP 0268

2. <u>Usi previsti:</u> Fissaggio post-installato in calcestruzzo non fessurato, vedi appendice, in particolare gli allegati da

B1-B5.

3. Fabbricante: fischerwerke GmbH & Co. KG, Klaus-Fischer-Str. 1, 72178 Waldachtal, Germany

4. Mandatario:

5. Sistemi di VVCP:

6. Documento per la valutazione europea: EAD 330232-01-0601-v01, previously referred as EAD 331612-00-0601

Valutazione tecnica europea: ETA-18/0101; 2018-07-16
Organismo di valutazione tecnica: ETA-Danmark A/S
Organismi notificati: 2873 TU Darmstadt

7. Prestazioni dichiarate:

Resistenza meccanica e stabilità (BWR 1)

Resistenza caratteristica al carico di tensione (carico statico e quasi-statico) Metodo A:

Resistenza alla rottura dell'acciaio: Allegato C1 Resistenza alla rottura per sfilamento: Allegato C1

Resistenza alla rottura del cono di calcestruzzo: Allegato C1

Robustezza: Allegato C1

Distanza dal bordo e interassi minimi: Allegato B5

Distanza dal bordo per evitare lo splitting sotto carico: Allegato C1

Resistenza caratteristica al carico di taglio (carico statico e quasi statico), metodo A:

Resistenza alla rottura dell'acciaio (carico di taglio): Allegato C2

Resistenza alla rottura per pry-out: Allegato C2

Resistenza caratteristica per una progettazione semplificata:

Metodo B: NPD Metodo C: NPD

Spostamenti:

Spostamenti sotto azioni statiche e quasi statiche: Allegato C2

Sicurezza in caso di incendio (BWR 2)

Reazione al fuoco: NPD

Resistenza al fuoco:

Resistenza al fuoco alla rottura dell'acciaio (carico di trazione): NPD Resistenza al fuoco alla rottura per sfilamento (carico di trazione): NPD Resistenza la fuoco alla rottura dell'acciaio (carico di taglio): NPD

Durabilità:

Durabilità: Allegati A3, B1-B3

8. <u>Documentazione tecnica appropriata e/o documentazione tecnica specifica:</u>

Fischer DATA DOP_ECs_V69.xlsm 1/2

La prestazione del prodotto sopra identificato è conforme all'insieme delle prestazioni dichiarate. La presente dichiarazione di prestazione è emessa, in conformità al regolamento (UE) n. 305/2011, sotto la sola responsabilità del fabbricante sopra identificato.

Firmato a nome e per conto del fabbricante da:

Dr.-Ing. Oliver Geibig, Direttore Generale Unità di Business & Engineering Tumlingen, 2021-01-20

Jürgen Grün, Direttore Generale Chimica & Qualità

Questa Dichiarazione di Prestazione (DoP) è stata preparata in varie lingue. In caso di contestazioni sull'interpretazione, prevarrà sempre la versione inglese.

L'Appendice include informazioni volontarie e complementari in lingua inglese che superano i requisiti di legge (lingua specificata in modo neutrale).

Fischer DATA DOP_ECs_V69.xlsm 2/2

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product

The fischer Bolt anchor FBN II HDG is an anchor made of zinc plated, hot-dip galvanised steel which is placed into a drilled hole and anchored by torque controlled expansion. The thickness of the corrosion protection layer is minimum 40 μm with a batch average of minimum 50 μm

Product and product description is given in Annex A.

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation of this European Technical Assessment.

The anchors are intended to be used with embedment depth given in Annex B, Table B1. The intended use specifications of the product are detailed in the Annex B1.

2 Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor as given in annex B depending on the corrosion protection.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Characteristics of product

Mechanical resistance and stability (BWR 1):

The essential characteristics are detailed in the Annex from C1 to C2.

Safety in case of fire (BWR 2):

No Performance assessed.

Hygiene, health and the environment (BWR3):

Regarding the dangerous substances contained in this European Technical Assessment, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

Safety in use (BWR4):

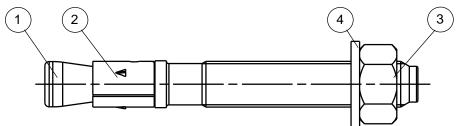
For basic requirement Safety in use the same criteria are valid for Basic Requirement Mechanical resistance and stability (BWR1).

Sustainable use of natural resources (BWR7)

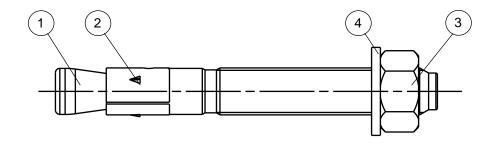
No performance determined

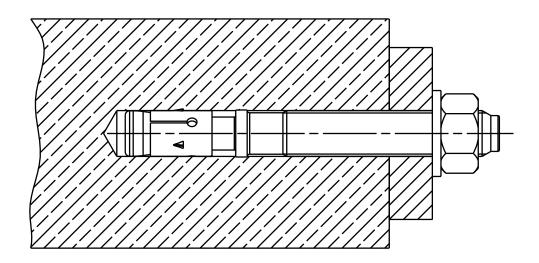
Other Basic Requirements are not relevant.

3.2 Methods of assessment


The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Works Requirements 1 and 4 has been made in accordance with EAD 330232-00-0601; Mechanical fasteners for use in concrete and EAD 331612-00-0601 Torque controlled mechanical wedge anchor with variable working life.

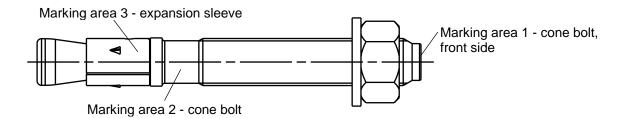
4 Assessment and verification of constancy of performance (AVCP)


4.1 AVCP system


According to the decision 1996/582/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1.

Cone bolt manufactured by cold - forming:

Cone bolt manufactured by turning:

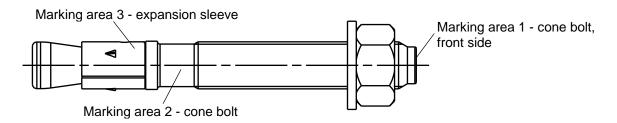


- ① Cone bolt (cold formed or turned)
- ② Expansion sleeve
- 3 Hexagon nut

fischer Bolt Anchor hot-dip galvanised FBN II HDG	Annex A1
Product description Installed condition	Appendix 4 / 13

FBN II HDG for use with standard and reduced embedment depth (hef, sta and hef, red)

Product label, example: FBN II 12/10 HDG

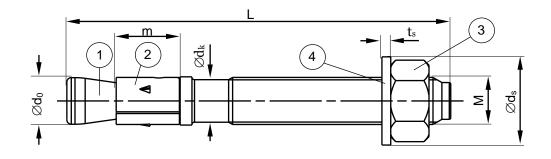

Brand | type of fastener placed at marking area 2 or marking area 3

Thread Size / max. thickness of fixture (t_{fix}) for h_{ef, sta} placed at marking area 2

Table A2.1: Letter-code on marking area 1 and maximum thickness of fixture t_{fix}:

Marking		Α	В	С	D	Ε	F	G	Н	-	K	L	М	N	0	Р	R	S	Т	U	٧	W	Χ	Υ	Z
Max.t _{fix} for h _{ef, sta}	M8-M20	5	10	15	20	25	30	35	40	45	50	60	70	80	90	100	120	140	160	180	200	250	300	350	400
	M8, M10	15	20	25	30	35	40	45	50	55	60	70	80	90	100	110	130	150	170	190	210	260	310	360	410
Max.t _{fix} for hef, red	M12, M16	20	25	30	35	40	45	50	55	60	65	75	85	95	105	115	135	155	175	195	215	265	315	365	415
	M20	30	35	40	45	50	55	60	65	70	75	85	95	105	115	125	145	165	185	205	225	275	325	375	425

FBN II K HDG for use with reduced embedment depth only (hef, red):


placed at marking area 2 or marking area 3

Thread Size / max. thickness of fixture (t_{fix}) identification K for h_{ef,red} placed at marking area 2

Table A2.2: Letter-code on marking area 1 and maximum thickness of fixture t_{fix}:

Marking	-A-	-B-	-C-	-D-	-E-	-F-	-G-	-H-	- -	-K-	-L-	-M-	-N-	-0-	-P-	-R-	-S-	-T-	-U-	-V-	-W-	-X-	-Y-	-Z-
Max. t _{fix} for h _{ef, red} M8-M20	5	10	15	20	25	30	35	40	45	50	60	70	80	90	100	120	140	160	180	200	250	300	350	400

fischer Bolt Anchor hot-dip galvanised FBN II HDG	Annex A2
Product description Anchor types	Appendix 5 / 13

Anchor dimensions [mm] Table A3.1:

Part	Designation			М8	M10	M12	M16	M20
		\varnothing d ₀		7,9	9,9	11,9	15,9	19,6
4	Cono holt	\emptyset d_k		7,1	8,9	10,8	14,5	18,2
1	Cone bolt	L_{min}	<u>></u>	56	71	86	120	139
		L_{max}	≤	261	316	396	520	654
2	Expansion sleeve	m		11,5	13,5	16,5	21,5	33,5
3	Hexagon nut	Wrench	n Size	13	17	19	24	30
4	Washer -	t s	<u>></u>	1,4	1,8	2,3	2,7	2,7
4	wasner	\emptyset ds	<u>></u>	15	19	23	29	36

Table A3.2: Materials

Part	Designation	Material
1	Cone bolt	Cold form steel or free cutting steel 1)
2	Expansion sleeve	Stainless steel acc. to EN 10088
3	Hexagon nut	Steel, property class 8 1)
4	Washer	Cold strip ^{1) 2)}

fischer Bolt Anchor hot-dip galvanised FBN II HDG	Annex A3		
Product description	Armondin C / 12		
Anchor dimensions	Appendix 6 / 13		
Materials			

 $^{^{1)}}$ Hot-dip galvanised ≥ 50 µm, according to EN ISO 10684: 2011 $^{2)}$ Alternative mechanical plated ≥ 53 µm, according to EN ISO 12683: 2005

Specifications of intended use

fischer Bolt Anchor hot-dip galvanised FBN II HDG	M8	M10	M12	M16	M20					
Static and quasi-static loads	/									
Standard embedment depth			/							
Reduced embedment depth			/							
Uncracked concrete			/							

Base materials:

- Normal weight concrete (uncracked) according to EN 206-1: 2000
- Strength classes C20/25 to C50/60 according to EN 206-1: 2000

Use conditions (Environmental conditions):

 Structures subject to dry internal conditions and to external atmospheric Classification of atmospheric corrosivity, determination and estimation C1 – CX according to EAD 331612-00-0601

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete
 work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement
 or to supports, etc.)
- Design of fastenings according to FprEN 1992-4: 2016 and EOTA Technical Report TR 055

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Hammer or hollow drilling according to Annex B5

Durability:

Variable working life according to EAD 331612-00-0601

Table B1.1: Durability of hot dip galvanised **coatings** according to EN ISO 10684: 2011-09 for coatings with mean thickness of minimum 50 µm

Corrosivity	Corrosivity	Durability
category		Thickness according to EN ISO 10684: 2011 chapter 8.3 ≥ 50µm in average
		Durability [years]
C1	Very low	50 ¹⁾
C2	Low	50 ¹⁾
C3	Medium	25
C4	High	12,5
C5	Very high	5
CX	Extreme	2

¹⁾ Durability of coating thickness. Working life of fastener according to EAD 330232-00-0601 section 1.2.2 (limited to 50 years

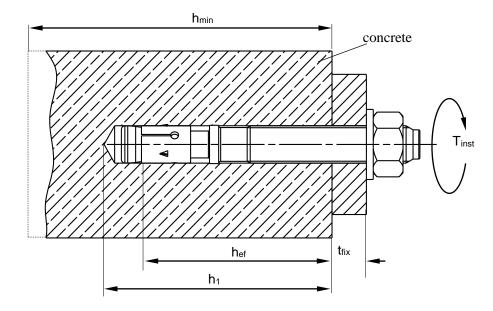
fischer Bolt Anchor hot-dip galvanised FBN II HDG	Annex B1
Intended use Specification	Appendix 7 / 13

Table B2.1 Description of typical atmospheric environments **indoor** related to the estimation of corrosivity categories according to ISO 9223-2012-02 Table C.1 and the corresponding durability categories according to EAD-330232-00-0601 chapter 2.2.12 a (1) – (3)

Corrosivity category	Corrosivity	Typical environments – Examples		
		Indoor	EAD- 330232 chapter 2.2.12 a	
C1	Very low	Heated spaces with low relative humidity and insignificant pollution,	(1)	
		e.g. offices, schools, museums		
C2	Low	Unheated spaces with varying temperature and relative humidity. Low frequency of condensation and low pollution,	(1)	
		e.g. storage, sport halls		
C3	Medium	Spaces with moderate frequency of condensation and moderate pollution from production process,	(2)	
		e.g. food-processing plants, laundries, breweries, dairies		
C4	High Spaces with high frequency of condensation and high pollution from production process,			
		e.g. industrial processing plants, swimming pools		
C5	Very high	Spaces with very high frequency of condensation and/or high pollution from production process,	(3)	
		e.g. mines, caverns for industrial purposes, unventilated sheds in subtropical and tropical zones		
СХ	Extreme	Spaces with almost permanent condensation or extensive periods of exposure to extreme humidity effects and/or high pollution from production process,	(3)	
		e.g. unventilated sheds in humid tropical zones with penetration of outdoor pollution including airborne chlorides and corrosion-stimulating particulate matter		

fischer Bolt Anchor hot-dip galvanised FBN II HDG	Annex B2
Intended use Specification	Appendix 8 / 13

Table B3.1 Description of typical atmospheric environments **outdoor** related to the estimation of corrosivity categories according to ISO9223-2012-02 Table C.1 and the corresponding durability categories according to EAD-330232-00-0601 chapter 2.2.12 a (1) – (3)


Corrosivity	Corrosivity	Typical environments – Examples	
category		Outdoor	EAD- 330232 chapter 2.2.12 a
C1	Very low	Dry or cold zone, atmospheric environment with very low pollution and time of wetness, e.g. certain deserts, Central Arctic/Antarctica	(2)
C2	Low	Temperate zone, atmospheric environment with low pollution (SO ₂ < 5 μg/m³), e.g. rural areas, small towns Dry or cold zone, atmospheric environment with short time of wetness, e.g. deserts, subarctic areas	(2)
C3	Medium	Temperate zone, atmospheric environment with medium pollution (SO ₂ : 5 μg/m³ to 30 μg/m³) or some effect of chlorides, e.g. urban areas, coastal areas with low deposition of chlorides Subtropical and tropical zone, atmosphere with low pollution	(2)
C4	High	Temperate zone, atmospheric environment with high pollution (SO ₂ : 30 μg/m³ to 90 μg/m³) or substantial effect of chlorides, e.g. polluted urban areas, industrial areas, coastal areas without spray of salt water or, exposure to strong effect of de-icing salts Subtropical and tropical zone, atmosphere with medium pollution	(2)
C5	Very high	Temperate and subtropical zone, atmospheric environment with very high pollution (SO ₂ : 90 μg/m³ to 250 μg/m³) and/or significant effect of chlorides, e.g. industrial areas, coastal areas, sheltered positions on coastline	(3)
CX	Extreme	Subtropical and tropical zone (very high time of wetness), atmospheric environment with very high SO ₂ pollution (higher than 250 µg/m³) including accompanying and production factors and/or strong effect of chlorides, e.g. extreme industrial areas, coastal and offshore areas, occasional contact with salt spray	(3)

fischer Bolt Anchor hot-dip galvanised FBN II HDG	Annex B3
Intended use Specification	Appendix 9 / 13

Table B5.1: Installation parameters

Size	М8	M10	M12	M16	M20			
Nominal drill hole diameter	d_0			8	10	12	16	20
Maximum diameter of drill bit	d _{cut}	<u> </u>	-	8,45	10,45	12,5	16,5	20,55
Effective embedment depth	hef	>	[mm]	40 (301) 2))	50 (40 ¹⁾)	65 (50 ¹⁾)	80 (651)	105 (80 ¹⁾)
Depth of drill hole to deepest point	h ₁	>	. []	56 (46 ^{1) 2)})	68 (58 ¹⁾)	85 (70 ¹⁾)	104 (89 ¹⁾)	135 (110 ¹⁾)
Diameter of clearance hole in the fixture	df	≤	<u>-</u>	9	12	14	18	22
Required setting torque	Tinst		[Nm]	15	30	40	70	200

¹⁾ Only for reduced embedment depth
²⁾ Use restricted to anchoring of structural components which are statically indeterminate

hef = Effective embedment depth

 t_{fix} = Thickness of fixture

h₁ = Depth of drill hole to deepest point

h_{min} = Minimum thickness of concrete member

 T_{inst} = Required setting torque

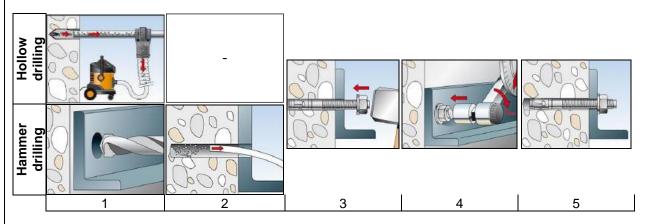

fischer Bolt Anchor hot-dip galvanised FBN II HDG	Annex B4
Intended use Installation parameters	Appendix 10 / 13

Table B6.1: Minimum thickness of concrete members, minimum spacing and minimum edge distance

Size				М8	M10	M12	M16	M20
¥	Effective embedment depth	h _{ef, sta}		40	50	65	80	105
ard mer th	Minimum thickness of member	h _{min}		100	100	120	160	200
Standard embedment depth	Minimum spacing	S _{min}	[mm]	40	50	70	90	120
Steme	Minimum edge distance	Cmin		40	50	70	90	120
, t	Effective embedment depth	h _{ef, red}		30 ¹⁾	40	50	65	80
educec bedme depth	Minimum thickness of member	h _{min}	[100	100	100	120	160
Reduced embedment depth	Minimum spacing	S _{min}	[mm]	40	50	70	90	120
en F	Minimum edge distance	Cmin		40	80	100	120	120

¹⁾ Use restricted to anchoring of structural components which are statically indeterminate

Installation instructions

No.	Des	scription				
1	Create drill hole with hammer drill	Create drill hole with hollow drill and vacuum cleaner				
2	Clean bore hole	-				
3	Set	anchor				
4	Expand anchor with prescribed installation torque T _{inst}					
5	Finished	d installation				

	Types of drills
Hammer drill	E
Hollow drill	

fischer Bolt Anchor hot-dip galvanised FBN II HDG	Annex B5
Intended use	
Minimum thickness of member, minimum spacing and edge distance	
Installation instructions	Appendix 11 / 13

Table C1.1: Characteristic values of tension resistance for standard and reduced embedment depth under static and quasi-static loads

Size			M8	M10	M12	M16	M20	
Steel failure for standard and redu	ced embed	dment depth						
Characteristic resistance	$N_{Rk,s}$	[kN]	16,5	27,2	41,6	77,9	107	
Partial safety factor	γMs	[-]	1,4	1,4	1,4	1,5	1,5	
Pullout failure for standard embedment depth								
Characteristic resistance C20/25	$N_{Rk,p}$	[kN]			_ 1)			
Pullout failure for reduced embedre	nent depth							
Characteristic resistance C20/25	$N_{Rk,p}$	[kN]	62)		-	1)		
		C25/30	1,12					
		C30/37	1,23					
Increasing factors for N-		C35/45	1,32					
Increasing factors for N _{Rk,p}	ψ_{c}	C40/50	1,41					
		C45/55	1,50					
		C50/60	1,58					
Installation safety factor	γinst	[-]	1,0					
Concrete cone and splitting failure	for stand	ard and reduce	ed embedn	nent depth				
Effective embedment depth	h _{ef, sta}	— [mm]	40	50	65	80	105	
Lifective embedinent deptil	h _{ef, red}	[111111]	30 ²⁾	40	50	65	80	
Factor k ₁ for uncracked concrete	k _{ucr,N}	[-]			11,0			
Spacing	S _{cr,N}	[mm]			3 h _{ef}			
Edge distance	Ccr,N	[mm]			1,5 h _{ef}			
Spacing (splitting failure)	Scr,sp	[mm]	190	200	290	350	370	
Edge distance (splitting failure)	C _{cr,sp}	[mm]	95	100	145	175	185	

fischer Bolt Anchor hot-dip galvanised FBN II HDG	Annex C1
Performances	
Characteristic values of tension resistance for standard and reduced	
embedment	Appendix 12 / 13

¹⁾ Pullout failure is not relevant ²⁾ Use restricted to anchoring of structural components which are statically indeterminate

Table C2.1: Characteristic values of **shear** resistance for **standard and reduced embedment depth** under static and quasi-static loads

Size			М8	M10	M12	M16	M20
Steel failure without lever arm for s	tandard and	reduced em	bedment o	depth			
Characteristic resistance	$V_{Rk,s}$	[kN]	13,3	21,0	31,3	55,1	67
Steel failure with lever arm for stand	dard embedn	nent depth					
Characteristic bending moment	M ⁰ Rk,s	[Nm]	26,2	52,3	91,6	232,2	422
Steel failure with lever arm for redu	ced embedm	ent depth					
Characteristic bending moment	M^0 Rk,s	[Nm]	19,9 ¹⁾	45,9	90,0	226,9	349
Concrete pryout failure for standard	d and reduce	d embedme	nt depth				
Factor for pryout	k 8	_ []	1,8	2,1	2,3	2,3	2,3
Installation safety factor γ_{inst}		- [-]					
Concrete edge failure for standard	and reduced	embedmen	t depth				
Effective length of english	$I_{f,sta}$		40	50	65	80	105
Effective length of anchor	$I_{f,red}$	 [mm]	301)	40	50	65	80
Effective diameter of anchor	d _{nom}		8	10	12	16	20
Installation safety factor	γinst	[-]			1,0		

¹⁾ Use restricted to anchoring of structural components which are statically indeterminate

Table C2.2: Displacements due to tension loads

Size		М8	M10	M12	M16	M20
Standard embedment depth	h _{ef, sta} [mm]	40	50	65	80	105
Tension load C20/25	N [kN]	6,1	8,5	12,6	17,2	25,8
Dianlacamenta	δηο [mm]	0,6	0,9	1,5	1,8	1,8
Displacements	$\frac{\delta N_{\infty}}{\delta N_{\infty}}$ [mm]			3,1		
Reduced embedment depth	h _{ef, red} [mm]	30	40	50	65	80
Tension load C20/25	N [kN]	2,8	6,1	8,5	12,6	17,2
Dienlacemente	δηο [mm]	0,4	0,7	0,7	0,9	1,0
Displacements	$\frac{\delta N_{\infty}}{\delta N_{\infty}}$ [mm]			1,6		

Table C2.3: Displacements due to shear loads

Size			М8	M10	M12	M16	M20
Shear load	V	[kN]	7,6	12,0	17,9	31,5	38,2
Displacements	δνο	— [mm]	1,5	1,6	2,0	3,0	2,6
	δν∞		2,3	2,4	3,0	4,5	3,9

fischer Bolt Anchor hot-dip galvanised FBN II HDG	Annex C2
Performances	
Characteristic values of shear resistance for standard and reduced embedment	
depth	
Displacements	