Approval No.:

Z-9.1-449

Applicant:

ABC Verbindungstechnik GmbH & Co. KG Kölner Straße 71-77 58256 Ennepetal

Product: SPAX®- screws for fastening timber

Valid until: 31st July 2012

General Building Authority Approval has herewith been granted for the above named product.* This general building authority approval comprises 12 pages and 14 appendices.

*

This general building authority approval replaces general building authority approval No. Z-9.1-449 dated 23rd August 2002, revised by notification dated 27th March 2006.

The product was first granted general building authority approval on 2nd March 1999.

I. GENERAL PROVISIONS

- 1. The general building authority approval certifies the suitability and applicability of the product pursuant to the building regulations of the Federal States of Germany.
- 2. The general building authority approval shall not exempt the holder from acquiring all approvals permissions and certificates legally required for the completion of the relevant building project.
- 3. The general building authority approval is granted without prejudice to the rights of third parties, in particular private property rights.
- 4. Irrespective of other regulations laid down in the "Special Regulations", the manufacturer and distributor of the approved product must forward copies of the general building authority approval to the user of the approved product and inform him that a copy of the general building authority approval must be kept available at the location at which the product is used. On request, all authorities involved in the realisation of the construction project must be handed a copy of the general building approval.
- 5. The general building authority approval may only be reproduced in its entirety. The publication of this document is only permitted with the explicit consent of the Deutsches Institut für Bautechnik. Texts and graphics in printed promotional material shall not contradict the general building authority approval. Translations of the general building authority approval must bear the following notice: "Translation of the original German document; translation not examined by Deutsches Institut für Bautechnik".
- 6. The general building authority approval can be revoked at any time. The terms and regulations governing general building authority approvals may be amended, and extended at any time, especially if this is warranted as a result of technological development.

II. SPECIAL PROVISIONS

1 Approved Product and Area of Application

1.1 Approved Product

The SPAX[®] screws covered by this general building authority approval are screws for fastening timber with a thread outer diameter of $d_1 \ge 8$ mm, and are made of carbon steel. The screws are either galvanised or coated with non-electrolytic zinc laminates, in certain cases with an additional organic top coating. They are used to fasten construction components of solid timber (soft wood) or glued laminated timber, general building authority approved laminated veneer lumber or wood based panels or steel components to solid timber (soft wood) and glued laminated timber or general building authority approved laminated veneer lumber.

1.2 Area of Application

SPAX[®] screws may be used as fasteners for timber components in load-bearing timber structures to be designed and constructed in accordance with the following standards:

DIN 1052-1:1998-04	 Timber Structures; design and construction
DIN 1052-2:1998-04	- Timber Structures; mechanical joints
DIN 1052-3:1998-04	- Timber Structures; buildings constructed from timber panels design and construction

insofar as nothing to the contrary is contained in this general building authority approval.

Dimensioning may also be carried out in accordance with DIN 1052:2004-08: Design of timber structures - General rules and rules for buildings or DIN V ENV 1995-1-1:1994-06-Eurocode 5: Design, structural analysis and dimensioning of timber of structures; Part 1-1: General dimensioning rules and dimensioning rules for structural engineering in conjunction with the National Application Document "Guidelines for the application of DIN V ENV 1995-1-1", February 1995 issue, provided nothing contrary is specified hereinafter.

The screws may be used for joining timber construction components in accordance with general building authority approval when the general building authority approval granted for the timber component permits the use of general building authority approved screws for joining same.

Timber construction components to which parts are joined must have a minimum thickness of $4 \cdot d_1$ ($d_1 =$ thread outer diameter of the screw in use).

This general building authority approval does not apply to connections to particle boards, including OSB boards, fibre boards or plywood panels.

In building materials of solid timber, glued laminated timber and laminated veneer lumber, the screws may only be applied when spruce, pine, or fir is used. This rule also applies to screws used in connections with timber construction components in accordance with the general building authority approvals.

These screws may be driven in the cover surfaces, narrow edge faces, and end edge faces of "KERTO" veneer timber "KERTO-S" and "KERTO-Q" in accordance with the general building authority approval No. Z-9.1-100, hereinafter called "KERTO-S" and "KERTO-Q". Screws applied to end edge faces are to be subjected to pull-out loads only.

The screws may only be used for mainly static loads (see DIN 1055-3: 2006-03).

The screws may only be driven at an angle of $45^{\circ} \le \alpha \le 90^{\circ}$ (α = angle between screw axis and grain direction) into the end grain.

For the area of application for screws, depending upon the environmental conditions, DIN 1052 standard applies. The screws may not be used in the area of application specified in DIN 1052-2:1988-04, Table 1, last column, and DIN 1052:2004-08, Table 2, Column 3, respectively.

2 Provisions specific to SPAX[®] Screws

2.1 **Properties and composition**

- 2.1.1 The shape, dimensions and dimensional deviations of the screw must conform to the specifications in appendices 1 to 9.
- 2.1.2 The screws specified in appendices 1 to 9 must be made of carbon steel in accordance with factory standards¹ ABC D 21, ABC-D20 or ABC-D21-F05.
- 2.1.3 The characteristic values of axial load-bearing capacity $R_{t,u,k}$, of the screws shall be at a minimum those specified in Table 1.

Thread Outer Diameter d1	Characteristic Values of Axial Load-Bearing Capacity R _{t,u,k}
mm	Ν
8.0	17,000
10.0	28,000
12.0	38,000

Table 1: Characteristic Values of Axial Load-Bearing Capacity Rt.u.k

2.1.4 The characteristic values of torque at fracture $M_{t,u,k}$ shall be at a minimum those specified in Table 2.

Table 2:	Characteristic Values of Torque at Fractu	re M _{t,u,k}
----------	---	-----------------------

Screws made of carbon steel			
Thread Outer Diameter d1	Characteristic Values of Torque at Fracture M _{t,u,k}		
mm	Nm		
8.0	21.0		
10.0	40.0		
12.0	70.0		

- 2.1.5 The screws must be capable of being bent to an angle of 45° without breaking.
- 2.1.6 Shape, dimensions and dimensional variations of the washers must correspond to the specifications contained in the appendices 10 to 12. The washers must be of steel.

2.2 Identification

The packaging of the screws and the manufacturer's delivery note must bear the mark of conformity (Ü mark) in accordance with relevant acts issued by the Federal States. The use of this mark is only permitted if the requirements specified in section 2.3 are met.

The packages and delivery note must also contain the following information:

- The name of the approved product (in the case of screws with a special point as per appendices 6 to 9 the wording "SPAX[®]/// screws" is to be added)
- Screw size

1

The internal factory standards are on file at the Deutsches Institut for Bautechnik.

2.3 Proof of conformity

2.3.1 General

Proof of conformity of the screws with this general building authority approval must be provided individually for each manufacturing plant and by means of a certificate of conformity based on internal production inspection and regular external production inspection, including an original inspection of the screw in accordance with the provisions below.

For granting the certificate of conformity and the external product inspection, including all necessary products inspections, the manufacturer of the screw must commission an authorised certification body as well as an approved inspection body.

The certification body must file a copy of the certificate of conformity with the Deutsches Institut für Bautechnik.

2.3.2 Internal Production Inspection

An internal production inspection system must be established and operated at each manufacturing plant. In this context, the internal inspection must provide for the continuous monitoring of production by the manufacturer. The inspection system must ensure that the building products manufactured at the relevant plant conform to the specifications laid down in this general building authority approval.

The internal production inspection system must include the following minimum procedures steps:

- The raw wire must meet the requirements of works certificate "2.2" according to DIN EN 10204²; compliance with the requirements specified in Section 2.1.2 must be checked on the basis of the test certificate
- When testing the axial load-bearing capacity of the screws and the torque at fracture, one or the other of the following tests may be omitted if the tests performed demonstrate that fulfilment of the characteristics not tested is assured
- 45° bending test
- Inspection of the screw dimensions

All further provisions associated with the internal production inspection system must be set forth in the supervision contract.

The results of the internal production inspection shall be recorded and evaluated. The records must contain, at a minimum, the following details:

- Name of the building product or the raw material and the parts
- Nature of the inspection or testing
- Date of manufacture and inspection of the product or the raw material and the parts
- Results of the tests and inspection and, as far as applicable, a comparison with the specifications
- Signature of person responsible for the internal production inspection

The records must be kept for at least five years, and must be made available to the external inspection body responsible for the external production control. On request, these records must be made available to the Deutsches Institut für Bautechnik an the relevant building supervisory board.

In the event of inadequate test results, the manufacturer must immediately take the necessary corrective measures. Non-conforming building products must be identified as such and handled in such a way that they cannot be confused at any time with conforming products. After the situation has been rectified, the relevant test must be repeated without delay, as far as this is technically possible and actually required to verify that non-conformity has been eliminated.

DIN EN 10204:2005-01 Metal Products - Test Certification Methods

2

2.3.3 External Production Inspection

The internal inspection at the manufacturing plants must be monitored by means of external production inspection, which must take place at regular intervals - at least twice annually.

The external production inspection is to include an original inspection of the screws and may also include random sample tests and checks. The authorised inspection body is responsible for sampling and testing.

The results of the certification and external production inspection must be kept for at least five years. On request, these records must be made available by the certification body or the authorised inspection body to the Deutsches Institut für Bautechnik and the relevant building supervisory board.

3 Provisions for design and dimensioning

3.1 General

For design and dimensioning DIN 1052 applies insofar as nothing which follows is in contradiction thereof. The general building authority approvals for the timber building components in use are to be adhered to.

Provided the following provisions are adhered to, the dimensions may also be determined in accordance with DIN V ENV 1995-1-1:1994-06 (in conjunction with the National Application Document).

Penetration depths of s < 4 \cdot d₁ (d₁ = thread outer diameter) shall not be considered for dimensioning.

Load-bearing SPAX[®] screw fastenings shall include at least two wood screws.

The screws may be used to fasten the following timber panels:

- Plywood according DIN EN 13986³ (DIN EN 636⁴) and DIN V 20000-1⁵ or in accordance with general building authority approval
- Particle board bonded with synthetic resin used in construction in accordance with DIN EN 13986 (DIN EN 312⁶) and DIN V 20000-1 or in accordance with general building authority approval
- Boards consisting of long, narrow, oriented strands OSB boards of the type OSB/3 and OSB/4 in accordance with DIN EN 13986 (DIN EN 300⁷) and DIN V 20000-1 or OSB boards in accordance with general building authority approval
- Fibreboards in accordance with DIN EN 13986 (DIN EN 622-2⁸ and 622-3⁹) and DIN V 20000-1 or in accordance with general building authority approval, minimum gross density 650 kg/m³
- Cement bonded particle boards in accordance with DIN EN 13986 (DIN EN 634-2¹⁰) and DIN V 20000-1 or in accordance with general building authority approval.

3	DIN EN 13986 :2005-03	Timber materials for use in construction - properties, evaluation of conformity
4	DIN EN 636 :2003-11	and marking Plywood specifications
5 6	DIN V 20000-1 :2005-12	Use of building products in structures - Part 1: timber materials
7	DIN EN 312 :2003-11 DIN EN 300 :1997-06	Particle board specifications Panels of long, narrow, oriented strands (OSB) - definitions -
	DIN EN 000 .1007 00	classification and specifications
8	DIN EN 622-2 :2004-07	Fibreboard specifications Part 2: specifications for hard boards
9 10	DIN EN 622-2 :2004-07	Fibreboard specifications Part 3: specifications for medium-hard boards
10	DIN EN 634-2:2007-05	Cement bonded particle board – requirements – Part 2: specifications for particle boards bonded with Portland cement (PZ) for use in dry, moist and outdoor areas

Page 7 of General Building Authority Approval No. Z-9.1-449 dated 5th July 2007

The thickness of the timber panels (boards) is to be at least $1.2 \cdot d_1$ (d₁ = thread outer diameter).

Shear loading of screws in the end edge faces of "KERTO-S" and "KERTO-Q" is not to be taken into account.

3.2 Dimensioning in accordance with DIN 1052-1 to -3:1988-04

3.2.1 Load at a right angle to the screw axis

Calculation of the maximum permissible load on the screws in loading case "H" with load at a right angle to the screw axis:

perm. N = 4 · a_1 · d_1 , maximum 17 · d_1^2 (in N) (1)

and for the fastening of steel parts to timber:

perm. N = $1.25 \cdot 17 \cdot d_1^2$ (in N).

(2)

(4)

For screws driven into the narrow edge faces of "KERTO-Q", the values in equations (1) and (2) must be reduced by 30 %.

For screws driven into the cover surfaces of "KERTO-S" or "KETO-Q" the maximum screw load is calculated as follows:

perm. N = 5 · a_1 · d_1 , maximum 20 · d_1^2 (in N) (3)

and for the fastening of steel parts to timber:

perm. N = $1.25 \cdot 20 \cdot d_1^2$ (in N)

In this case d_1 represents the thread outer diameter in mm in accordance with appendices 1 to 9, and a_1 the thickness of the fastened timber and wood based panel respectively in mm.

Where the penetration depth s (see DIN 1052-2:1988-04, fig. 21) is less than $8 \cdot d_1$, the permissible load must be reduced by the ratio between the actual penetration depth s to the nominal penetration depth $8 \cdot d_1$.

3.2.2 Load in screw axis direction

Calculation of the maximum permissible short-term and long-term load in axis direction in load case "H" for screws driven at an angle of $45^{\circ} \le \alpha \le 90^{\circ}$ ($\alpha = =$ angle between screw axis and timber grain direction):

perm. N _{Z,D} = 5.0 \cdot s _g \cdot d ₁ (in N)	(5)
---	-----

Screws driven into cover surfaces of "KERTO-S" and "KERTO-Q", at an angle of $45^{\circ} \le \alpha \le 90^{\circ}$ may be calculated at

perm. $N_{Z,D} = 6.0 \cdot s_g \cdot d_1$ (in N) for $d_1 = 8 \text{ mm}$	(6)

perm.
$$N_{Z,D} = 5.0 \cdot s_g \cdot d_1$$
 (in N) for $d_1 > 8 \text{ mm}$ (7)

For screws driven into narrow edge faces or end edge faces these values are to be reduced by factor 0.8.

Here d₁ is the thread outer diameter in mm according to Appendices 1 to 9 and s_g is the penetration depth (see DIN 1052-2:1988-04, Fig. 21) in mm. For penetration depth s_g shall not be more than the thread length I_{gV} and I_{gT} respectively as per the appendices 1 to 9 taken into account. Penetration depths s_g of less than $4 \cdot d_1$ are not to be considered.

Due to the risk of the screw head being pulled through the timber, the permissible loading of the screw on pull-out shall be max

perm. N_Z = $5.0 \cdot d_k^2$ (in N)

and for fastening wood based panels at thicknesses of \geq 12 to \leq 20 mm a maximum

perm. $N_Z = 4.0 \cdot d_k^2$ (in N)

(9)

(8)

Here d_k represents the head diameter of the screw and the outer diameter of the washer respectively in mm as per appendices 1 to 12. Washer diameters of > 35 mm shall not be considered. The equations (8) and (9) apply to screws with an outer thread diameter of $d_1 = 12$ mm when using wood based panals only when using washers.

In the case of fastening wood based panels, a maximum of 200 N may be calculated for panels less than 12 mm in thickness, whereby the minimum thicknesses set forth in Section 3.1. must be complied with.

For sheet metal-to-timber connections the equations (8) and (9) do not apply.

In consideration of the axial load-bearing capacity the loading of the screws may not exceed the values in Table 3.

Thread Outer Diameter d ₁	Permissible Values of Tensile Load-Bearing Capacity N _Z
mm	Ν
8.0	8,000
10.0	14,000
12.0	19,000

Table 3: Permissible Values of Tensile Load-Bearing Capacity Nz

3.2.3 Combined load

The following formula applies to combined loads:

$$\left(\frac{N_Z}{\text{perm. }N_Z}\right)^2 + \left(\frac{N}{\text{perm. }N}\right)^2 \le 1$$
(10)

3.3 Dimensioning in accordance with DIN 1052: 2004-08 or DIN V ENV 1995-1-1 (in conjunction with the national application document)

3.3.1 Load at a right angle to screw axis

For dimensioning in accordance with DIN 1052:2004-08 or DIN V ENV 1995-1-1:1994-06, the thread outer diameter d_1 in the appendices 1 to 9 may be applied as the nominal screw diameter d.

For the characteristic value of yield moment $M_{v,k}$ the given values of Table 4 are valid.

Table 4:	Characteristic Values of Yield Moment $M_{y,k}$	

Thread Outer Diameter d ₁	Characteristic Values of Yield Moment M _{y,k}
mm	Nmm
8.0	20,000
10.0	30,000
12.0	48,000

For screws subject to shear loads driven into the narrow edge faces of "KERTO-Q", an actual embedding strength of one third of that of the cover surface must be assumed.

Page 9 of General Building Authority Approval No. Z-9.1-449 dated 5th July 2007

3.3.2 Load in screw axis direction

The characteristic value of the pull-out resistance for screws driven at an angle of $45^{\circ} \le \alpha \le 90^{\circ}$ (α = angle between screw axis and direction of timber grain) can be calculated as follows:

$$R_{ax,k} = \frac{f_{1,k} \cdot I_{ef} \cdot d_1}{\sin^2 \alpha + \frac{4}{3} \cos^2 \alpha}$$
(in N) (11)

with

$$f_{1,k} = 80 \cdot 10^{-6} \cdot \rho_k^2 \text{ (in N/mm^2)}$$
(1)

For screws driven at an angle of $45^{\circ} \le \alpha \le 90^{\circ}$ into the cover surfaces of "KERTO-S" and "KERTO-Q" f_{1.k} is to be assumed at a value of

 $f_{1,k} = 70 \cdot 10^{-6} \cdot \rho_k^2$ (in N/mm²) for $d_1 = 8$ mm and (13)

$$f_{1,k} = 60 \cdot 10^{-6} \cdot \rho_k^2$$
 (in N/mm²) for $d_1 \ge 8 \text{ mm}$ (14)

For screws driven into the narrow edge faces or end edge faces the above values must be reduced by factor 0.8

The following definitions apply:

- d₁ = thread outer diameter in mm
- I_{ef} = length of the thread in the timber component with point in mm. For penetration depth I_{ef} shall not be more than the thread length I_{gV} and I_{gT} respectively as per appendices 1 to 9 into account. Penetration depths I_{ef} smaller than $4 \cdot d_1$ are not to be considered.

 $f_{1,k}$ = characteristic value of pull-out parameter in N/mm²

 ρ_k = characteristic value the raw density of the timber in kg/m³

 α = angle between screw axis and grain direction $45^{\circ} \le \alpha \le 90^{\circ}$

Due to the risk of the screw head being pulled through of the screws, the characteristic value of the pull-out resistance on screws subject to pull-out is to be calculated at a maximum of

$$R_{ax,k} = 10.0 \cdot d_k^2$$
 (in N)

and for fastening wood based panels at thicknesses of \geq 12 à \leq 20 mm at a maximum of

$$R_{ax,k} = 8.0 \cdot d_k^2$$
 (in N)

(16)

(15)

2)

Here d_k represents the head diameter of the screw and the outer diameter of the washer respectively in mm as per appendices 1 to 12. Washer diameters of > 35 mm shall not be considered. The equations (15) and (16) apply to screws with an outer thread diameter of $d_1 = 12$ mm when using wood based panels only when using washers.

In the case of fastening wood based panels, a maximum of 400 N may be calculated for panels less than 12 mm in thickness, whereby the minimum thicknesses set forth in Section 3.1. must be complied with.

For sheet-metal-to-timber connections the equations (15) and (16) do not apply.

In consideration of the axial load-bearing capacity of the screws, the values according to Table 1 are not to be exceeded.

3.3.3 Combined Load

On fastenings subject to both axial (F_{ax}) and right angle (F_{la}) loads it must be demonstrated that

$$\left(\frac{F_{ax,d}}{R_{ax,d}}\right)^{2} + \left(\frac{F_{la,d}}{R_{la,d}}\right)^{2} \le 1$$
(17)

is the case.

Here $F_{ax,d}$ and $F_{la,d}$ represent the dimensioning values of the forces parallel and at a right angle to the screw axis respectively. $R_{ax,d}$ and $R_{la,d}$ represent the design values of the load-bearing capacity of the fastenings in the case of single-force-component loading parallel and at a right angle to the screw axis respectively.

4 **Provisions for production**

- 4.1 For production DIN 1052 applies, insofar as nothing that follows hereunder is in contradiction thereof. The general building authority approvals for timber building components are to be observed.
- 4.2 The screws may only be used for the fastening of solid timber parts (soft wood) and elements made of glued-laminated timber, general building authority approved laminated veneer lumber and wood based panels in accordance with section 3.1, or for the fastening of steel parts to solid timber parts (soft wood), and elements made of glued-laminated timber or general building authority approved laminated veneer lumber.

The screws may be used for joining timber construction components in accordance with general building authority approval when the general building authority approval granted for the timber component permits the use of general building authority approved screws for joining same.

Timber construction elements to which parts are joined must have a minimum thickness of $4 \cdot d_1$ (d_1 = thread outer diameter of the screw in use).

This general building authority approval does not apply to connections to particle boards including OSB boards, fibre boards or plywood panels.

For fastening in solid timber, glued-laminated timber, laminated veneer lumber, the screws may only be used for products made of spruce, pine or spruce fir. This applies also to the use of screws for the fastening of timber construction components in accordance with general building authority approval.

These screws may be driven in the cover surfaces, narrow edge faces, and end edge faces of "KERTO" veneer timber "KERTO-S" and "KERTO-Q" in accordance with the general building authority approval No. Z-9.1-100, hereinafter called "KERTO-S" and "KERTO-Q". Screws applied to end edge faces are to be subjected to pull-out loads only.

4.3 The screws may only be driven with the tools recommended for that purpose by the manufacturer.

The holes in steel components are to be pre-drilled at a suitable diameter. In cement-bonded particle board, the screw holes must be predrilled with a diameter $0.7 \cdot d_1$. In timber building components the screws must be driven without pre-drilling.

The screw thread may also be in the fastened timber component.

The screws must be countersunk into the timber construction components such that the screw head is flush with the surface of the fastened part, but for washer head, pan head and hex head with head part k protruding. Deeper countersinking is not permitted.

The countersink screws may be used together with the washers in accordance with appendices 10 to 12. The full surface of the washer must rest against the timber when the screw has been driven.

4.4 Minimum pitches

4.4.1 The minimum distances of the screws must correspond to the values laid down in DIN 1052 as is the case for nails with no pre-drilled holes, whereby the thread outer diameter d_1 as specified in appendices 1 to 9 is to be calculated as the as the screw diameter.

For screws with a thread outer diameter of $d_1 \ge 8$ mm the distance from the end grain face in grain direction must be at least $15 \cdot d_1$.

If the distance in grain direction between one screw and the next, and between the screw and the end grain edge is at least $25 \cdot d_1$, the distance at right angle to grain direction to the edge that is not load-bearing may be reduced to $3 \cdot d_1$.

For minimum distances in timber construction components in accordance with general building authority approval, the provisions of the general building authority approvals apply.

For screws with a thread outer diameter of $d_1 = 8 \text{ mm}$ or a CUT-point, which according to the construction design are subject to loads in screw axis direction exclusively, the following minimum distances apply, provided a minimum timber thickness of $t = 12 \cdot d_1$ is adhered to (see appendices 13 and 14):

 $a_1 = 5 \cdot d_1$

 $a_2 = 5 \cdot d_1$

 $a_{4.c} = 4 \cdot d_1$

Distance a_1 between the screw axes in a plane parallel to grain direction:

Distance a_2 between the screw axes at right angles to a plane parallel to grain direction:

Distance $a_{3,c}$ between the centre of gravity of the portion of the screw in the timber and the end grain face: $a_{3,c} = 5 \cdot d_1$

Distance $a_{4,c}$ between the centre of gravity of the portion of the screw in the timber and the side face:

The distance a_2 between the screw axes may be reduced to $2.5 \cdot d_1$ provided each screw has a connecting face of $a_1 \cdot a_2 = 25 \cdot d_1^2$.

4.4.2 Minimum distances for connections using "KERTO-S" and "KERTO-Q".

For connections with "KERTO-Q" (narrow edge faces) and "KERTO-S" subject to shear loads, the minimum distances laid down in DIN 1052, must be complied with, as is the case for nails with no pre-drilling, whereby the screw diameter d_1 is to be calculated as the thread outer diameter as specified in appendices 1 to 9.

For the distances of screws driven into the cover surfaces of "KERTO-Q" the values in Table 5 of the general building authority approval No. Z-9.1-100 dated 26.05.2006 apply.

For screws, which according to the construction design are subject to loads in screw axis direction exclusively and driven into "KERTO-Q" or "KERTO-S" with a minimum thickness of $t = 6 \cdot d_1$, the following minimum distances apply (see appendices 13 to 14):

Distance a_1 between the screw axes in a plane parallel to grain direction:	$a_1 = 5 \cdot d_1$
Distance a_2 between the screw axes at right angles to a plane parallel to grain direction:	$a_2 = 5 \cdot d_1$
Distance $a_{3,c}$ between the centre of gravity of the portion of the screw in the timber and the end grain face:	$a_{3,c} = 5 \cdot d_1$
Distance $a_{4,c}$ between the centre of gravity of the portion of the screw in the timber and the side face:	$a_{4,c} = 3 \cdot d_1$
The distance a_2 between the screw axes may be reduced to $2.5 \cdot d_1$ provide	ded each

The distance a_2 between the screw axes may be reduced to $2.5 \cdot d_1$ provided each screw has a connecting face of $a_1 \cdot a_2 = 25 \cdot d_1^2$.

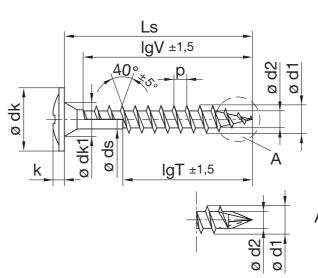
4.5 For screws with a thread outer diameter of $d_1 = 8$ mm, the timber construction parts to be fastened must have a thickness of at least 30 mm; for screws with $d_1 = 10$ mm, the components must be at least 40 mm thick, and for screws with $d_1 = 12$ mm, the timber thickness must be at least 80 mm.

For the minimum thicknesses of wood based panels see specifications in section 3.1.

For minimum thicknesses of timber construction components in accordance with the general building authority approvals the provisions specified in the general building authority approvals apply additionally.

4.6 For end grain connections solid timber must be at least half-cut and the timber may not have a moisture content of more than 18 % at the time of fastening.

	g	PAX		2			Self	⁻ drilli	ng screw v	vith full an	d partial th	nread
		Ċ	y−≤ ok b	. 		Μ	aterial	: cold	rolled wire a	-		ory Norm
	Countersunk head								Screws of I	nign carboi	n steel	
		ptional w	vith	°×3°°- 1 1 1	±1,5				Fo A: al	Manufact trade mai ternativ ith CUT	rk (T-STAF	2 / } }
Nominal d	iameter		8	.0	10	0.0	12	2.0				
d1	thread size		8	.0).0	12	2.0				
dk	permissible to		16	5.1).20 3.6	22	2.6				
uk	permissible to			5.1		.60						
d2	core diamete	r	5	.0	6	.1	7	.5				
	permissible to	olerance		- 0	.30		- 0	.50				
ds	shank diamet	-	5.	60		80	8.	50				
	permissible to				± 0		0.0					
k	height of hea	d, max.	_	.4				.6				
						.0	6	.0				
р												
-	permissible to	olerance	_	40	± 0.		т	50				
T-STAR siz	permissible to	olerance	_	40	T	50		50 enaths	(full thread -	laV / partial		
T-STAR siz Ls	permissible to	1	T		T: Star	50 ndard tl	hread l	engths	(full thread =	lgV / partial	thread = IgT)	
T-STAR siz Ls Nom. dim.	permissible to	max.	T4 IgV	40 IgT	T	50			(full thread =	lgV / partial	thread = IgT)	
T-STAR siz Ls	e min.	1	T4 IgV 32.0		T: Star	50 ndard tl	hread l	engths	(full thread =	lgV / partial	thread = IgT)	
T-STAR siz Ls Nom. dim. 40	permissible to	max. 41.0	T4 IgV	lgT	T: Star	50 ndard tl	hread l	engths	(full thread =	lgV / partial	thread = IgT)	
T-STAR siz Ls Nom. dim. 40 45	permissible to e min. 38.5 43.5	max. 41.0 46.0	IgV 32.0 37.0		T: Star IgV	50 ndard tl	nread le IgV	engths	(full thread =	lgV / partial	thread = IgT)	
T-STAR siz Ls Nom. dim. 40 45 50	min. 38.5 43.5 48.5	max. 41.0 46.0 51.0	IgV 32.0 37.0 42.0	lgT 27.0	T Star IgV 40.0	50 ndard tl	lgV 40.0	engths	(full thread =	lgV / partial	thread = IgT)	
T-STAR siz Ls Nom. dim. 40 45 50 55	min. 38.5 43.5 48.5 53.5	max. 41.0 46.0 51.0 56.0	IgV 32.0 37.0 42.0 47.0	lgT 27.0 32.0	T Star IgV 40.0 45.0	50 ndard ti IgT	lgV 1gV 40.0 45.0	lgT	(full thread =	lgV / partial	thread = IgT)	
T-STAR siz Ls Nom. dim. 40 45 50 55 60	min. 38.5 43.5 48.5 58.5 63.5 68.5	max. 41.0 46.0 51.0 56.0 61.0	IgV 32.0 37.0 42.0 47.0 52.0	lgT 27.0 32.0 37.0 37.0 42.0	T: Star IgV 40.0 45.0 50.0	50 ndard ti IgT	40.0 40.0 45.0 50.0 55.0 60.0	lgT	(full thread =	IgV / partial	thread = IgT)	
T-STAR siz Ls Nom. dim. 40 45 50 55 60 65 70 75	min. 38.5 43.5 48.5 53.5 63.5 68.5 73.5	max. 41.0 46.0 51.0 56.0 61.0 66.0 71.0 76.0	IgV 32.0 37.0 42.0 47.0 52.0 57.0 61.0 61.0	IgT 27.0 32.0 37.0 42.0 42.0	T: Star IgV 40.0 45.0 50.0 55.0 60.0 60.0	50 ndard ti IgT 40.0 40.0 45.0	40.0 45.0 50.0 55.0 60.0	engths lgT 40.0 40.0 45.0	(full thread =	IgV / partial	thread = IgT)	
T-STAR siz Ls Nom. dim. 40 45 50 55 60 65 70 75 80	min. 38.5 43.5 48.5 53.5 63.5 68.5 73.5 78.5	max. 41.0 46.0 51.0 56.0 61.0 66.0 71.0 76.0 81.0	IgV 32.0 37.0 42.0 47.0 52.0 57.0 61.0 61.0 70.0	lgT 27.0 32.0 37.0 37.0 42.0 42.0 47.0	T: Star IgV 40.0 45.0 50.0 55.0 60.0 70.0	50 ndard tl IgT 40.0 40.0 45.0 50.0	40.0 40.0 45.0 50.0 55.0 60.0 70.0	engths IgT 40.0 40.0 45.0 50.0	(full thread =	IgV / partial	thread = IgT)	
T-STAR siz Ls Nom. dim. 40 45 50 55 60 65 70 75 80 90	permissible tr min. 38.5 43.5 43.5 53.5 58.5 63.5 68.5 73.5 78.5 88.5	max. 41.0 46.0 51.0 56.0 61.0 66.0 71.0 76.0 81.0 91.5	IgV 32.0 37.0 42.0 47.0 52.0 57.0 61.0 61.0 70.0 80.0	lgT 27.0 32.0 37.0 37.0 42.0 42.0 47.0 52.0	T: Star IgV 40.0 45.0 50.0 55.0 60.0 60.0 70.0 80.0	50 IgT 40.0 40.0 55.0	40.0 45.0 50.0 55.0 60.0 60.0 70.0 80.0	engths IgT 40.0 40.0 45.0 50.0 55.0	(full thread =	lgV / partial	thread = IgT)	
T-STAR siz Ls Nom. dim. 40 45 50 55 60 65 70 65 70 75 80 90 100	min. 38.5 43.5 43.5 53.5 58.5 63.5 68.5 73.5 78.5 88.5 98.5	max. 41.0 46.0 51.0 56.0 61.0 66.0 71.0 76.0 81.0 91.5 101.5	IgV 32.0 37.0 42.0 47.0 52.0 57.0 61.0 61.0 70.0 80.0 80.0	lgT 27.0 32.0 37.0 37.0 42.0 42.0 42.0 42.0 52.0 57.0	T3 Star IgV 40.0 45.0 50.0 55.0 60.0 60.0 70.0 80.0 80.0	50 Idard ti IgT 40.0 40.0 45.0 50.0 55.0 60.0	40.0 40.0 45.0 50.0 55.0 60.0 70.0	40.0 40.0 40.0 45.0 50.0 55.0 60.0	(full thread =	IgV / partial	thread = IgT)	
T-STAR siz Ls Nom. dim. 40 45 50 55 60 65 70 65 70 65 70 75 80 90 100 110	min. 38.5 43.5 43.5 53.5 58.5 63.5 68.5 78.5 88.5 98.5 108.5	max. 41.0 46.0 51.0 56.0 61.0 66.0 71.0 76.0 81.0 91.5 101.5 111.5	IgV 32.0 37.0 42.0 47.0 52.0 57.0 61.0 61.0 70.0 80.0 80.0 80.0	IgT 27.0 32.0 37.0 37.0 42.0 42.0 47.0 52.0 57.0 70.0	T3 Star IgV 40.0 45.0 50.0 55.0 60.0 60.0 70.0 80.0 80.0 80.0	50 dard th IgT 40.0 40.0 45.0 50.0 55.0 60.0 70.0	40.0 45.0 50.0 55.0 60.0 60.0 70.0 80.0	40.0 40.0 40.0 45.0 50.0 55.0 60.0 80.0	(full thread =	IgV / partial	thread = IgT)	
T-STAR siz Ls Nom. dim. 40 45 50 55 60 65 70 65 70 75 80 90 100 110 120	min. 38.5 43.5 43.5 48.5 53.5 58.5 63.5 68.5 78.5 98.5 108.5 118.5	max. 41.0 46.0 51.0 56.0 61.0 66.0 71.0 76.0 81.0 91.5 101.5 111.5 121.5	IgV 32.0 37.0 42.0 47.0 52.0 57.0 61.0 61.0 61.0 70.0 80.0 80.0 80.0 80.0	IgT 27.0 32.0 37.0 42.0 42.0 47.0 52.0 57.0 70.0 70.0	T3 Star IgV 40.0 45.0 50.0 55.0 60.0 60.0 60.0 70.0 80.0 80.0 80.0 80.0	50 dard th IgT 40.0 40.0 40.0 50.0 55.0 60.0 70.0	40.0 45.0 50.0 55.0 60.0 60.0 70.0 80.0	40.0 40.0 40.0 45.0 50.0 55.0 60.0 80.0 80.0	(full thread =	IgV / partial	thread = IgT)	
T-STAR siz Ls Nom. dim. 40 45 50 55 60 65 70 75 80 90 100 110 120 130	permissible tree min. 38.5 43.5 43.5 53.5 53.5 63.5 68.5 73.5 88.5 98.5 108.5 118.5 128.0	max. 41.0 46.0 51.0 56.0 61.0 66.0 71.0 76.0 81.0 91.5 101.5 111.5 121.5 132.0	IgV 32.0 37.0 42.0 47.0 52.0 57.0 61.0 61.0 70.0 80.0 80.0 80.0	IgT 27.0 32.0 37.0 37.0 42.0 42.0 47.0 52.0 57.0 70.0 70.0 70.0	T3 Star IgV 40.0 45.0 50.0 55.0 60.0 60.0 70.0 80.0 80.0 80.0	50 dard th IgT 40.0 40.0 40.0 45.0 50.0 55.0 60.0 70.0 70.0 70.0	40.0 45.0 50.0 55.0 60.0 60.0 70.0 80.0	40.0 40.0 40.0 45.0 50.0 55.0 60.0 80.0 80.0 80.0	(full thread =	IgV / partial	thread = IgT)	
T-STAR siz Ls Nom. dim. 40 45 50 55 60 55 60 65 70 75 80 90 100 100 110 120 130 140	permissible tr permissible tr a8.5 38.5 43.5 43.5 53.5 53.5 63.5 68.5 73.5 78.5 98.5 118.5 128.0 138.0	max. 41.0 46.0 51.0 56.0 61.0 66.0 71.0 76.0 81.0 91.5 101.5 111.5 121.5 132.0 142.0	IgV 32.0 37.0 42.0 47.0 52.0 57.0 61.0 61.0 61.0 70.0 80.0 80.0 80.0 80.0	IgT 27.0 32.0 37.0 42.0 42.0 42.0 47.0 57.0 57.0 70.0 70.0 70.0 80.0	T3 Star IgV 40.0 45.0 50.0 55.0 60.0 60.0 60.0 70.0 80.0 80.0 80.0 80.0	50 dard th IgT 40.0 40.0 40.0 45.0 50.0 55.0 60.0 70.0 70.0 70.0 80.0	40.0 45.0 50.0 55.0 60.0 60.0 70.0 80.0	40.0 40.0 40.0 40.0 50.0 55.0 60.0 80.0 80.0 80.0 80.0		IgV / partial	thread = IgT)	
T-STAR siz Ls Nom. dim. 40 45 50 55 60 55 60 65 70 75 80 90 100 110 120 130 140 150	permissible tr e min. 38.5 43.5 43.5 53.5 53.5 63.5 68.5 73.5 78.5 98.5 118.5 128.0 138.0 148.0	max. 41.0 46.0 51.0 56.0 61.0 66.0 71.0 76.0 81.0 91.5 101.5 111.5 121.5 132.0 142.0 152.0	IgV 32.0 37.0 42.0 47.0 52.0 57.0 61.0 61.0 61.0 70.0 80.0 80.0 80.0 80.0	IgT 27.0 32.0 37.0 42.0 42.0 42.0 47.0 52.0 57.0 70.0 70.0 80.0 80.0	T3 Star IgV 40.0 45.0 50.0 55.0 60.0 60.0 60.0 70.0 80.0 80.0 80.0 80.0	50 dard the second seco	40.0 45.0 50.0 55.0 60.0 60.0 70.0 80.0	40.0 40.0 40.0 40.0 50.0 55.0 60.0 80.0 80.0 80.0 80.0 100.0		IgV / partial	thread = IgT)	
T-STAR siz Ls Nom. dim. 40 45 50 55 60 65 70 75 80 90 100 110 120 120 130 140 150 160	min. 38.5 43.5 43.5 43.5 53.5 53.5 63.5 68.5 73.5 78.5 88.5 98.5 108.5 118.5 128.0 138.0 148.0 158.0	max. 41.0 46.0 51.0 56.0 61.0 66.0 71.0 76.0 81.0 91.5 101.5 111.5 121.5 132.0 142.0 152.0 162.0	IgV 32.0 37.0 42.0 47.0 52.0 57.0 61.0 61.0 61.0 70.0 80.0 80.0 80.0 80.0	IgT 27.0 32.0 37.0 42.0 42.0 42.0 47.0 57.0 57.0 70.0 70.0 80.0 80.0 80.0	T3 Star IgV 40.0 45.0 50.0 55.0 60.0 60.0 70.0 80.0 80.0 80.0 80.0	50 dard the ligT 40.0 40.0 40.0 40.0 40.0 50.0 55.0 60.0 70.0 70.0 70.0 80.0 80.0 80.0	40.0 45.0 50.0 55.0 60.0 60.0 70.0 80.0	engths lgT 40.0 40.0 40.0 50.0 55.0 60.0 80.0 80.0 80.0 80.0 80.0 100.0		IgV / partial	thread = IgT)	
T-STAR siz Ls Nom. dim. 40 45 50 55 60 65 70 75 80 90 100 110 120 130 140 150 160 180	permissible tr permissible tr as.5 38.5 43.5 43.5 43.5 53.5 58.5 63.5 68.5 73.5 78.5 98.5 118.5 128.0 138.0 158.0 178.0	max. 41.0 46.0 51.0 56.0 61.0 66.0 71.0 76.0 81.0 91.5 101.5 111.5 121.5 132.0 142.0 152.0 162.0 182.0	IgV 32.0 37.0 42.0 47.0 52.0 57.0 61.0 61.0 61.0 70.0 80.0 80.0 80.0 80.0	IgT 27.0 32.0 37.0 37.0 42.0 42.0 47.0 52.0 57.0 70.0 70.0 70.0 80.0 80.0 80.0 80.0	T3 Star IgV 40.0 45.0 50.0 55.0 60.0 60.0 70.0 80.0 80.0 80.0 80.0	50 dard th 1gT 40.0 40.0 40.0 40.0 40.0 40.0 50.0 55.0 60.0 70.0 70.0 70.0 70.0 80.0 80.0 80.0 8	40.0 45.0 50.0 55.0 60.0 60.0 70.0 80.0	engths lgT 40.0 40.0 45.0 50.0 55.0 60.0 80.0 80.0 80.0 80.0 80.0 100.0 100.0		IgV / partial	thread = IgT)	
T-STAR siz Ls Nom. dim. 40 45 50 55 60 65 70 65 70 75 80 90 100 110 120 110 120 130 140 150 160 180 200	min. 38.5 43.5 43.5 43.5 53.5 53.5 63.5 68.5 73.5 78.5 88.5 98.5 108.5 118.5 128.0 138.0 148.0 158.0	max. 41.0 46.0 51.0 56.0 61.0 66.0 71.0 76.0 81.0 91.5 101.5 111.5 121.5 132.0 142.0 152.0 162.0	IgV 32.0 37.0 42.0 47.0 52.0 57.0 61.0 61.0 61.0 70.0 80.0 80.0 80.0 80.0	IgT 27.0 32.0 37.0 42.0 42.0 42.0 47.0 57.0 57.0 70.0 70.0 80.0 80.0 80.0	T3 Star IgV 40.0 45.0 50.0 55.0 60.0 60.0 70.0 80.0 80.0 80.0 80.0	50 dard the ligT 40.0 40.0 40.0 40.0 40.0 50.0 55.0 60.0 70.0 70.0 70.0 80.0 80.0 80.0	40.0 45.0 50.0 55.0 60.0 60.0 70.0 80.0	engths lgT 40.0 40.0 40.0 50.0 55.0 60.0 80.0 80.0 80.0 80.0 80.0 100.0		IgV / partial	thread = IgT)	
T-STAR siz Ls Nom. dim. 40 45 50 55 60 65 60 65 70 70 75 80 90 100 110 120 130 140 150 160 180	permissible tr permissible tr as.5 38.5 43.5 43.5 43.5 53.5 58.5 63.5 68.5 73.5 78.5 98.5 118.5 128.0 138.0 158.0 178.0	max. 41.0 46.0 51.0 56.0 61.0 66.0 71.0 76.0 81.0 91.5 101.5 111.5 121.5 132.0 142.0 152.0 162.0 182.0	IgV 32.0 37.0 42.0 47.0 52.0 57.0 61.0 61.0 61.0 70.0 80.0 80.0 80.0 80.0	IgT 27.0 32.0 37.0 37.0 42.0 42.0 47.0 52.0 57.0 70.0 70.0 70.0 80.0 80.0 80.0 80.0	T3 Star IgV 40.0 45.0 50.0 55.0 60.0 60.0 70.0 80.0 80.0 80.0 80.0	50 dard th 1gT 40.0 40.0 40.0 40.0 40.0 40.0 50.0 55.0 60.0 70.0 70.0 70.0 70.0 80.0 80.0 80.0 8	40.0 45.0 50.0 55.0 60.0 60.0 70.0 80.0	engths lgT 40.0 40.0 45.0 50.0 55.0 60.0 80.0 80.0 80.0 80.0 80.0 100.0 100.0		IgV / partial	thread = IgT)	


Other thread lengths in the range $\geq 4 \cdot d1$ to max. standard length permitted.

Appendix 1

SPAX[®]-S Washer head

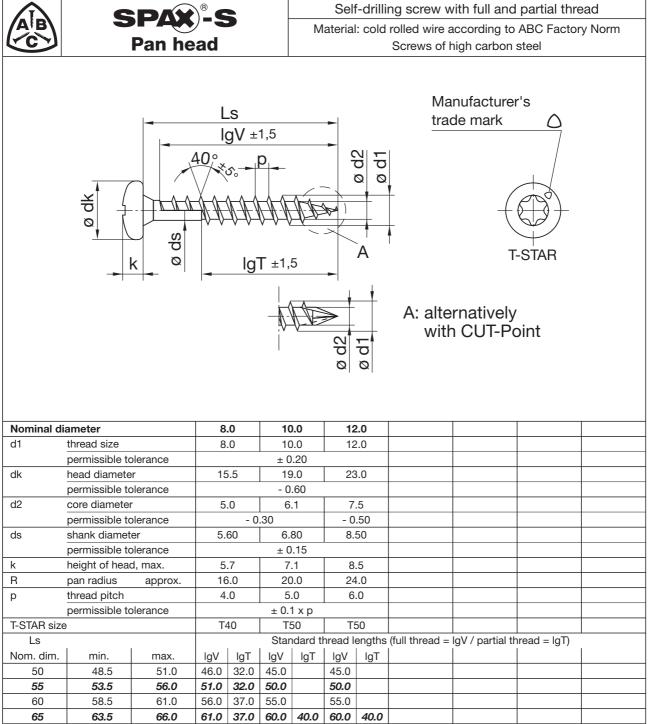
Manufacturer's

trade mark

A: alternatively with CUT-Point

Nominal d	iameter		8	.0	10	0.0	12	2.0				
d1	thread size		8	.0	10	0.0	12	2.0				
	permissible t	olerance			± 0).20	-					
dk	head diamete	er	20.0		25.0		30.0					
	permissible t	olerance				- 0.60						
dk1	countersink o	diameter	9.0		12.0		14.0					
	permissible t	olerance			+ (0.3						
d2	core diameter		5	.0	6	.1	7	.5				
	permissible t	olerance		- 0	.30		- 0	.50				
ds	shank diame	ter	5.	60	6.	80	8.	50				
	permissible t	olerance			± 0	.15						
k	height of hea	d, max.	4	.0	4	.7	5	.6				
р	thread pitch		4	.0	5	.0	6	.0				
	permissible t	olerance			± 0.	1 x p						
T-STAR siz	e		T4	40		50		50				
Ls						ndard th	hread lengths		(full thread	= lgV / par	tial thread =	lgT)
Nom. dim.	min.	max.	lgV	lgT	lgV	lgT	lgV	lgT				
50	48.5	51.0	46.0	32.0	45.0		45.0					
55	53.5	56.0	51.0	32.0	50.0		50.0					
60	58.5	61.0	56.0	37.0	55.0		55.0					
65	63.5	66.0	61.0	37.0	60.0	40.0	60.0	40.0				
70	68.5	71.0	61.0	42.0	60.0	40.0	60.0	40.0				
75	73.5	76.0	70.0	42.0	70.0	45.0	70.0	45.0				
80	78.5	81.0	70.0	47.0	70.0	50.0	70.0	50.0				
90	88.5	91.5	80.0	52.0	80.0	55.0	80.0	55.0				
100	98.5	101.5	80.0	57.0	80.0	60.0	80.0	60.0				
110	108.5	111.5	80.0	70.0	80.0	70.0		80.0				
120	118.5	121.5	80.0	70.0	80.0	70.0		80.0				
130	128.0	132.0	80.0	70.0	80.0	70.0		80.0				
140	138.0	142.0		80.0		80.0		80.0				
150	148.0	152.0		80.0		80.0		100.0				
160	158.0	162.0		80.0		80.0		100.0				
180	178.0	182.0		80.0		80.0		100.0				
200	198.0	202.0		80.0		80.0		100.0				
to												
600	597.0	602.0		80.0		80.0		100.0				

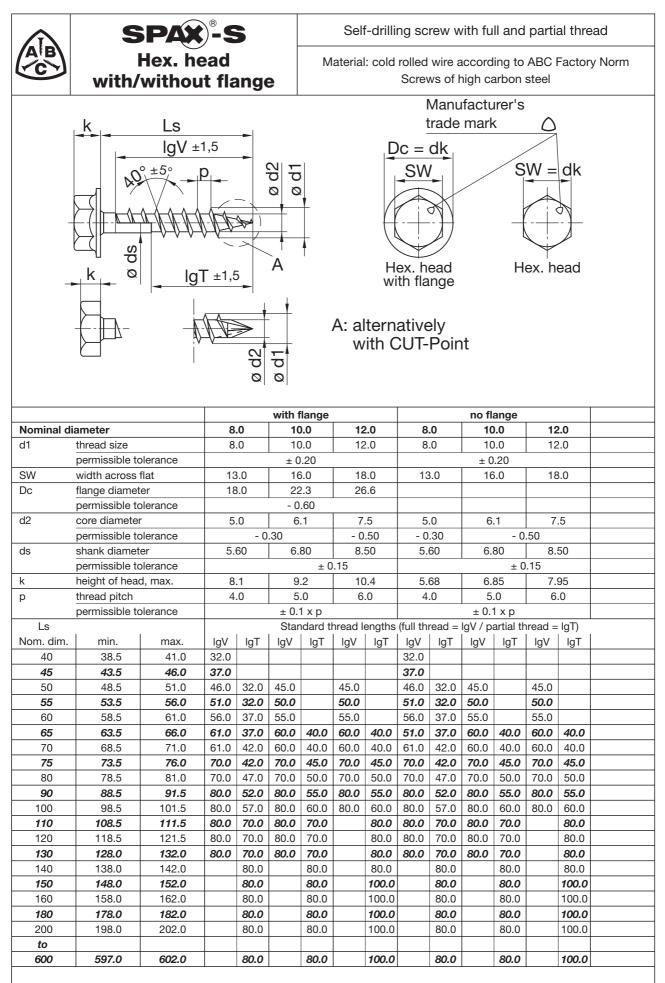
Intermediate lengths on Ls possible


Other thread lengths in the range $\geq 4 \cdot d1$ to max. standard length permitted.

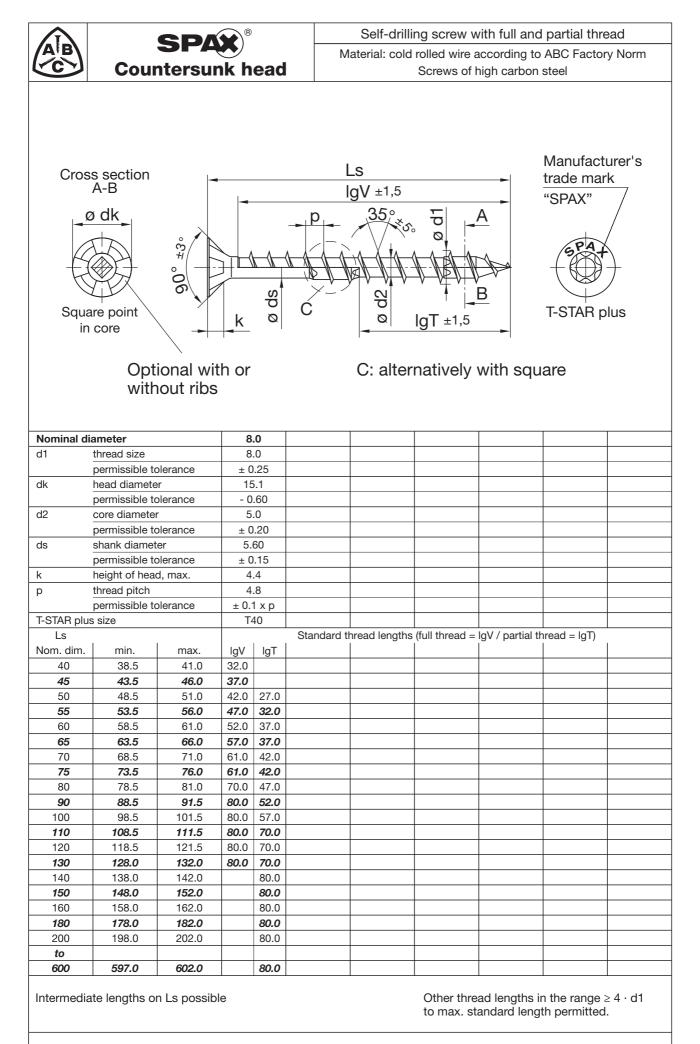
Appendix 2

AB	S	PAX) [®] -5	5		N/			ng screw w rolled wire a			
	Raised	\sim	rsun	k he	ead	IV	ateria		Screws of I	-		
		optional r r withou	× with	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	′ ±1,5 → P ↓ ↓ ↓ IgT ±				A: al	Manufacti rade mar	k O T-STAR	} } }
Nominal d	liameter		8	.0	1(0.0	12	2.0				
d1	thread size		_	.0	1(0.0		2.0				
dk	permissible to		1.5	5.1).20 3.6	22.6					
-	permissible to				- 0	.60						
d2	core diamete		5	.0		.1		.5				
ds	permissible to shank diamet		5	- 0 60	.30	80		.50 50				
us	permissible to	-	5.	00	± 0.		0.	30				
k	height of hea		4	.4		.4	6	.6				
р	thread pitch		4	.0	5	.0 6.0						
	permissible to	olerance				1хр						
T-STAR siz	e		T	40		50		50	(C 11.11)			
Ls Nom. dim.	min	may	1~1/	I~T	Star IgV		hread I IgV	1	(full thread =	IgV / partial ⁻	thread = lgT)	I
40	min. 38.5	max. 41.0	lgV 32.0	lgT	igv	lgT	igv	lgT				
45	43.5	46.0	37.0									
50	48.5	51.0	42.0	27.0	40.0		40.0					
55	53.5	56.0	47.0	32.0	45.0		45.0					
60	58.5	61.0	52.0	37.0	50.0		50.0					
65	63.5	66.0	57.0	37.0	55.0	40.0	55.0	40.0				
70	68.5	71.0	61.0	42.0	60.0	40.0	60.0	40.0				
75	73.5	76.0	61.0	42.0	60.0	45.0	60.0	45.0				
80 90	78.5 88.5	81.0 91.5	70.0 80.0	47.0 52.0	70.0 80.0	50.0 55.0	70.0 80.0	50.0 55.0				-
100	98.5	101.5	80.0	57.0	80.0	60.0	80.0	60.0				
110	108.5	111.5	80.0	70.0	80.0	70.0	00.0	80.0				
		121.5	80.0	70.0	80.0	70.0		80.0				
120	118.5	121.0			80.0	70.0		80.0				
120 130	118.5 128.0	132.0	80.0	70.0	00.0		-		1	i		
			80.0	80.0		80.0		80.0				
130	128.0 138.0 148.0	132.0	80.0			80.0 80.0		80.0 100.0				
130 140 150 160	128.0 138.0 148.0 158.0	132.0 142.0 152.0 162.0	80.0	80.0 80.0 80.0		80.0 80.0		100.0 100.0				
130 140 150 160 180	128.0 138.0 148.0 158.0 178.0	132.0 142.0 152.0 162.0 182.0	80.0	80.0 80.0 80.0 80.0		80.0 80.0 80.0		100.0 100.0 100.0				
130 140 150 160 180 200	128.0 138.0 148.0 158.0	132.0 142.0 152.0 162.0	80.0	80.0 80.0 80.0		80.0 80.0		100.0 100.0				
130 140 150 160 180	128.0 138.0 148.0 158.0 178.0	132.0 142.0 152.0 162.0 182.0	80.0	80.0 80.0 80.0 80.0		80.0 80.0 80.0		100.0 100.0 100.0				

Other thread lengths in the range $\geq 4 \cdot d1$ to max. standard length permitted.


Appendix 3

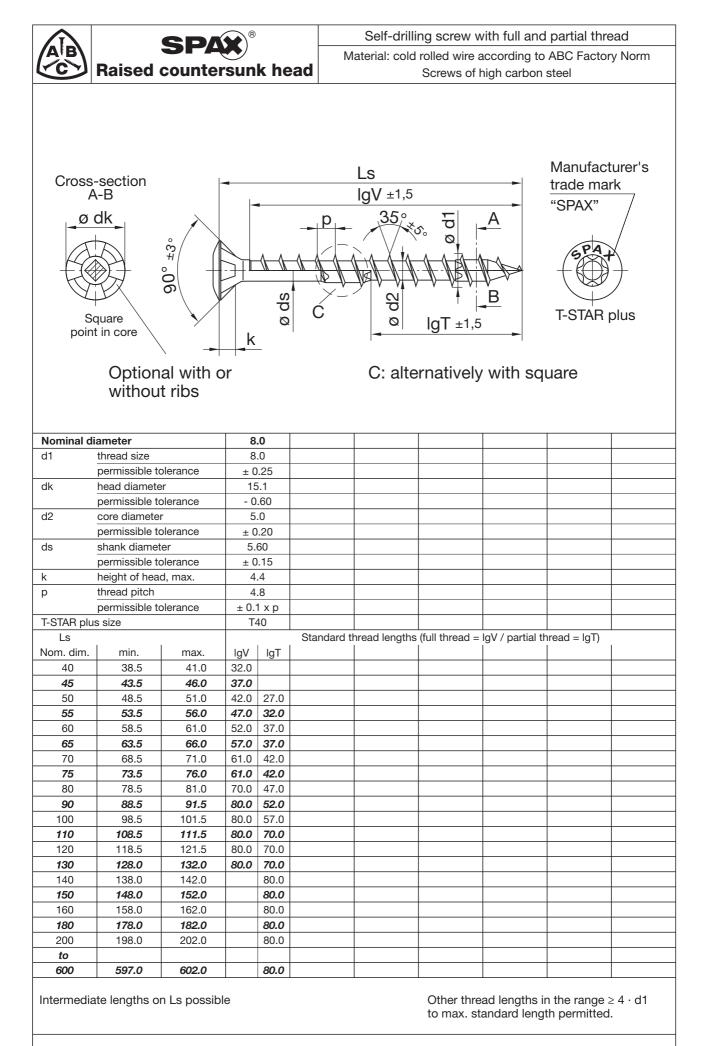
70	68.5	71.0	61.0	42.0	60.0	40.0	60.0	40.0		
75	73.5	76.0	70.0	42.0	70.0	45.0	70.0	45.0		
80	78.5	81.0	70.0	47.0	70.0	50.0	70.0	50.0		
90	88.5	91.5	80.0	52.0	80.0	55.0	80.0	55.0		
100	98.5	101.5	80.0	57.0	80.0	60.0	80.0	60.0		
110	108.5	111.5	80.0	70.0	80.0	70.0		80.0		
120	118.5	121.5	80.0	70.0	80.0	70.0		80.0		
130	128.0	132.0	80.0	70.0	80.0	70.0		80.0		
140	138.0	142.0		80.0		80.0		80.0		
150	148.0	152.0		80.0		80.0		100.0		
160	158.0	162.0		80.0		80.0		100.0		
180	178.0	182.0		80.0		80.0		100.0		
200	198.0	202.0		80.0		80.0		100.0		
to										
600	597.0	602.0		80.0		80.0		100.0		


Other thread lengths in the range $\ge 4 \cdot d1$ to max. standard length permitted.

Appendix 4

Other thread lengths in the range $\ge 4 \cdot d1$ to max. standard length permitted.

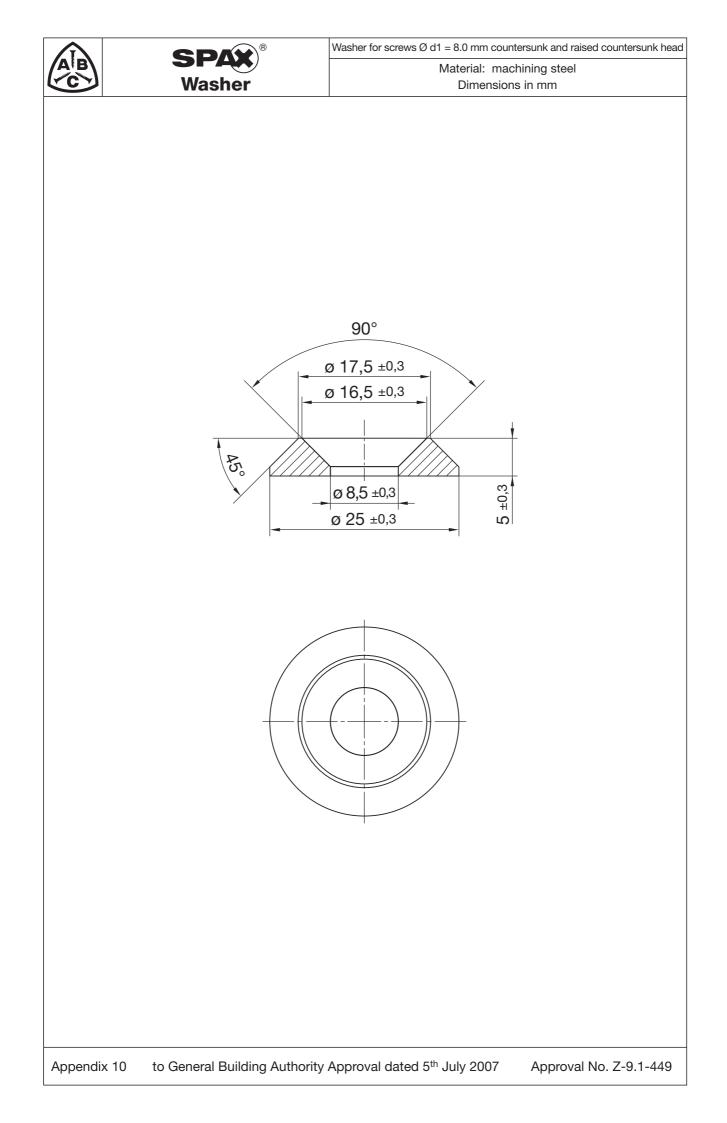
Appendix 5

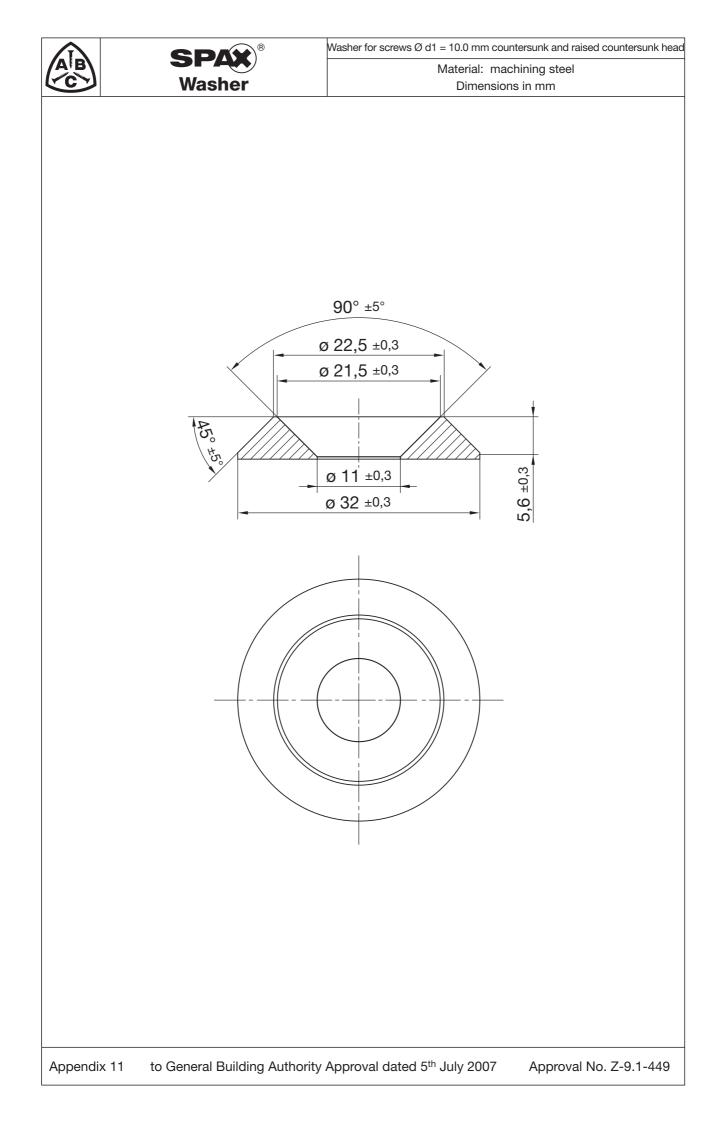


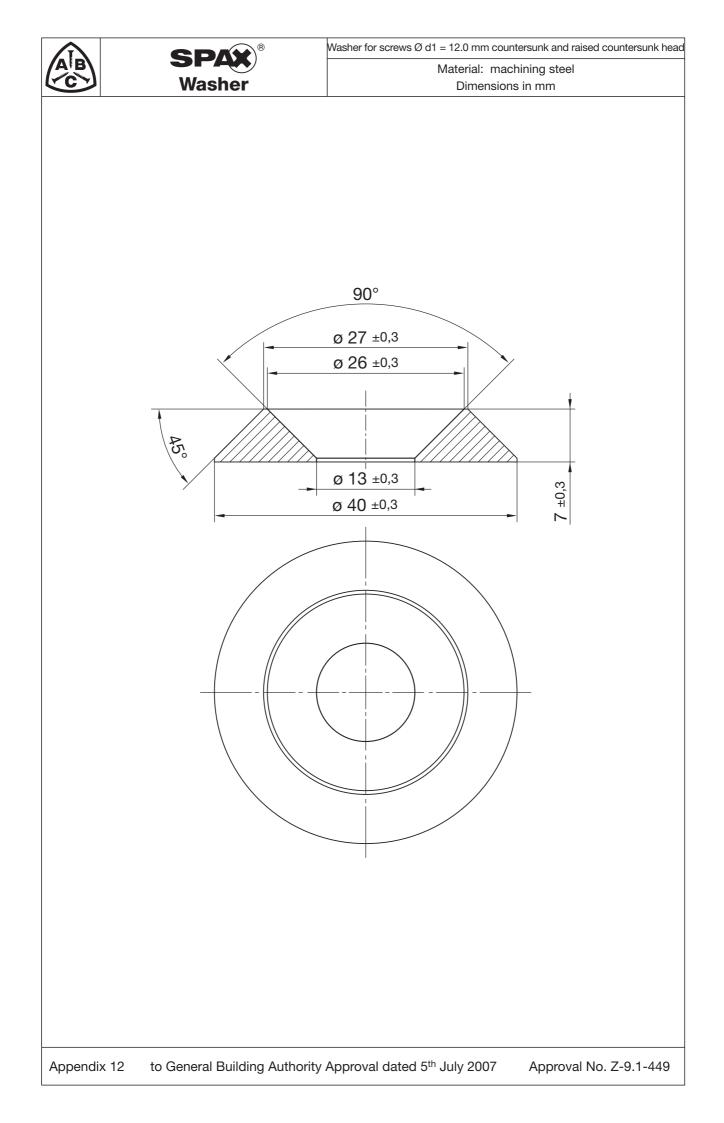
Appendix 6

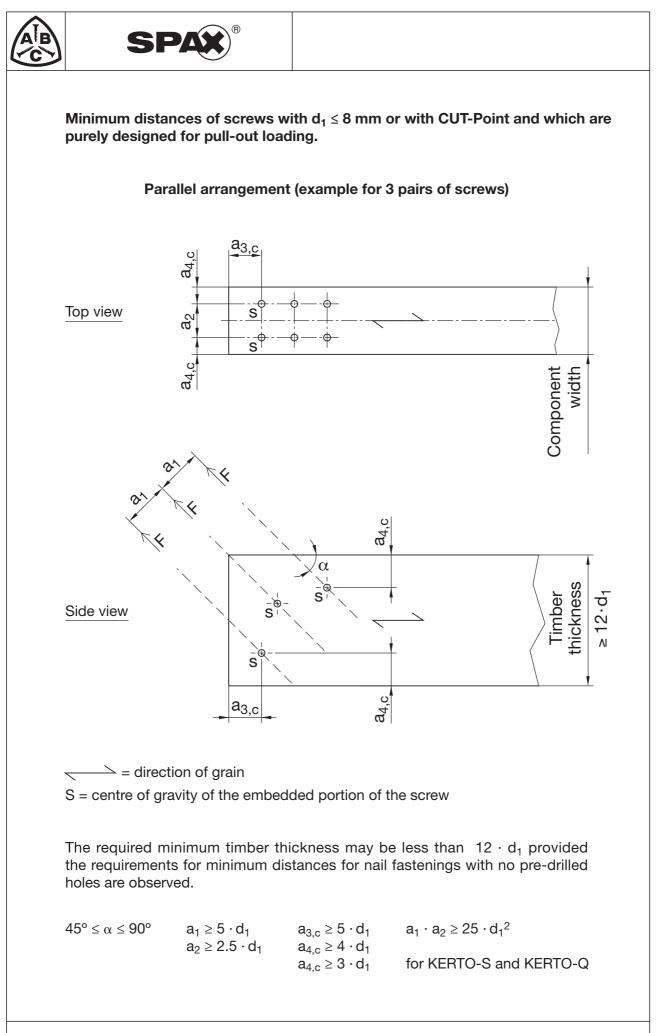
	SPAX [®]					Self-drilling screw with full and partial thread Material: cold rolled wire according to ABC Factory Norm							
		asher	head	d	N	laterial: colc	l rolled wire a Screws of	-		ory Norm			
	or a section A-B Ø dk Guare Square bint in core		0			/ ±1,5 35° ×5° CD	$T \pm 1,5$		Manufac trade ma "SPAX" T-STAR	urk			
Nominal d	liameter		8	.0				1					
d1	thread size			.0									
	permissible to	olerance		.25									
dk	head diamete	er	20	0.0									
	permissible to			.60									
dk1	countersink c			00									
	permissible to												
	permissible to	bierance	+ 0	0.50									
d2	core diamete	r		.0									
-	core diamete permissible to	r olerance	5 ± 0	.0).20									
-	core diamete permissible to chank diamet	r olerance ter	5 ±0 5.	.0 0.20 60									
d2 ds	core diamete permissible to chank diamet permissible to	r olerance ter olerance	5 ± 0 5. ± 0	.0 0.20 60 0.15									
ds k	core diamete permissible to chank diamet permissible to height of hea	r olerance ter olerance	5 ± 0 $5.$ ± 0 4	.0 0.20 60 0.15 .3									
ds k	core diamete permissible to chank diamet permissible to height of hea thread pitch	r blerance ter blerance d, max.	5 ± 0 5 ± 0 4 4	.0 0.20 60 0.15 .3 .8									
ds k p	core diamete permissible to chank diamet permissible to height of hea thread pitch permissible to	r blerance ter blerance d, max.	$ \begin{array}{c} 5 \\ \pm 0 \\ 5. \\ \pm 0 \\ 4 \\ 4 \\ \pm 0. \\ \end{array} $.0 0.20 60 0.15 .3 .8 1 x p									
ds k p T-STAR plu	core diamete permissible to chank diamet permissible to height of hea thread pitch permissible to	r blerance ter blerance d, max.	$ \begin{array}{c} 5 \\ \pm 0 \\ 5. \\ \pm 0 \\ 4 \\ 4 \\ \pm 0. \\ \end{array} $.0 0.20 60 0.15 .3 .8	Ctandard								
ds k p T-STAR plu Ls	core diamete permissible to chank diamet permissible to height of hea thread pitch permissible to us size	r olerance olerance d, max. olerance	$ \begin{array}{c} 5 \\ \pm 0 \\ 5. \\ \pm 0 \\ 4 \\ 4 \\ \pm 0. \\ T4 \end{array} $.0 .20 60 .15 .3 .8 1 x p 40	Standard t	hread lengths	 	IgV / partia	al thread = IgT)				
ds k p T-STAR plu Ls Nom. dim.	core diamete permissible to chank diamet permissible to height of hea thread pitch permissible to is size min.	r olerance olerance d, max. olerance max.	$ \begin{array}{c} 5\\ \pm 0\\ 5.\\ \pm 0\\ 4\\ 4\\ \pm 0.\\ T_{4}\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$.0 .20 60 .15 .3 .8 1 x p 40 IgT	Standard t	hread lengths	 	IgV / partia	al thread = IgT)				
ds p T-STAR plu Ls Nom. dim. 50	core diamete permissible to chank diamet permissible to height of hea thread pitch permissible to us size min. 48.5	r olerance olerance d, max. olerance max. 51.0	$ \begin{array}{c} 5 \\ \pm 0 \\ 5. \\ \pm 0 \\ 4 \\ 4 \\ \pm 0. \\ T^{4} \\ IgV \\ 46.0 \end{array} $.0).20 60).15 .3 .8 1 x p 40 lgT 32.0	Standard t	hread lengths	s (full thread =	lgV / partia	al thread = IgT)				
ds p T-STAR plu Ls Nom. dim. 50 55	core diamete permissible to chank diamete permissible to height of hea thread pitch permissible to is size min. 48.5 53.5	r olerance olerance d, max. olerance max. 51.0 56.0	$5 \\ \pm 0 \\ 5. \\ \pm 0 \\ 4 \\ 4. \\ \pm 0. \\ T_{4} \\ 1 \\ gV \\ 46.0 \\ 51.0 \\ 51.0 \\ 51.0 \\ 0 \\ 51.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$.0).20 60).15 .3 .8 1 x p 40 IgT 32.0 32.0	Standard t	hread lengths	s (full thread =	lgV / partia	al thread = IgT)				
ds p T-STAR plu Ls Nom. dim. 50 55 60	core diamete permissible to chank diamete permissible to height of hea thread pitch permissible to us size min. 48.5 53.5 58.5	r olerance ter d, max. olerance max. 51.0 56.0 61.0	$5 \\ \pm 0 \\ 5. \\ \pm 0 \\ 4 \\ 4. \\ \pm 0. \\ T_{4} \\ 1 \\ gV \\ 46.0 \\ 51.0 \\ 56$.0 .20 60 .15 .3 .8 1 x p 40 IgT 32.0 32.0 37.0	Standard t	hread lengths	s (full thread =	IgV / partia	al thread = IgT)				
ds k p T-STAR plu Ls Nom. dim. 50 55 60 65	core diamete permissible to chank diamete permissible to height of hea thread pitch permissible to us size min. 48.5 53.5 58.5 63.5	r olerance ter d, max. olerance max. 51.0 56.0 61.0 66.0	$5 \\ \pm 0 \\ 5. \\ \pm 0 \\ 4 \\ 4 \\ \pm 0. \\ T4 \\ 1 \\ gV \\ 46.0 \\ 51.0 \\ 56.0 \\ 61.0 \\$.0 .20 60 .15 .3 .8 1 x p 40 IgT 32.0 32.0 37.0 37.0	Standard t	hread lengths	s (full thread =	IgV / partia	al thread = IgT)				
ds k p T-STAR plu Ls Nom. dim. 50 55 60 65 70	core diamete permissible to chank diamete permissible to height of hea thread pitch permissible to us size min. 48.5 53.5 58.5 63.5 68.5	r olerance ter d, max. olerance max. 51.0 56.0 61.0 66.0 71.0	$5 \\ \pm 0 \\ 5. \\ \pm 0 \\ 4 \\ 4 \\ \pm 0. \\ T^{4} \\ 1 \\ gV \\ 46.0 \\ 51.0 \\ 56.0 \\ 61.$.0 .20 .20 .0.15 .3 .8 1 x p 40 IgT 32.0 32.0 37.0 37.0 42.0	Standard t	hread lengths	s (full thread =	IgV / partia	al thread = IgT)				
ds k p T-STAR plu Ls Nom. dim. 50 55 60 65	core diamete permissible to chank diamet permissible to height of hea thread pitch permissible to is size min. 48.5 53.5 58.5 63.5 68.5 68.5 73.5	r olerance ter d, max. olerance max. 51.0 56.0 61.0 66.0	$5 \\ \pm 0 \\ 5. \\ \pm 0 \\ 4 \\ \pm 0. \\ 74 \\ 1 \\ gV \\ 46.0 \\ 51.0 \\ 56.0 \\ 61.0 \\ 61.0 \\ 70.0 \\ 70.0 \\ 70.0 \\ 50 \\ 70.0 \\ 70.0 \\ 70.0 \\ 50 \\ 70.0 \\ $.0 .20 .20 .0.15 .3 .8 1 x p 40 IgT 32.0 32.0 37.0 37.0 42.0 42.0	Standard t	hread lengths	(full thread =	 	al thread = IgT)				
ds k p T-STAR plu Ls Nom. dim. 50 55 60 65 70 75	core diamete permissible to chank diamet permissible to height of hea thread pitch permissible to is size min. 48.5 53.5 58.5 63.5 68.5 68.5 73.5 78.5	r blerance ter blerance d, max. blerance max. 51.0 56.0 61.0 66.0 71.0 76.0 81.0	$5 \\ \pm 0 \\ 5. \\ \pm 0 \\ 4 \\ \pm 0. \\ 74 \\ 1 \\ 1 \\ 1 \\ 1 \\ 56.0 \\ 51.0 \\ 56.0 \\ 61.0 \\ 61.0 \\ 70.$.0 .20 .20 .0.15 .3 .8 1 x p 40 IgT 32.0 32.0 37.0 37.0 42.0 42.0 42.0 47.0	Standard t	hread lengths	(full thread =	 	al thread = IgT)				
ds k p T-STAR plu Ls Nom. dim. 50 55 60 65 70 75 80	core diamete permissible to chank diamet permissible to height of hea thread pitch permissible to is size min. 48.5 53.5 58.5 63.5 68.5 68.5 73.5	r blerance ter blerance d, max. blerance max. 51.0 56.0 61.0 66.0 71.0 76.0 81.0 91.5	$5 \\ \pm 0 \\ 5. \\ \pm 0 \\ 4 \\ \pm 0. \\ 74 \\ 1 \\ gV \\ 46.0 \\ 51.0 \\ 56.0 \\ 61.0 \\ 61.0 \\ 70.0 \\ 70.0 \\ 70.0 \\ 50 \\ 70.0 \\ 70.0 \\ 70.0 \\ 50 \\ 70.0 \\ $.0 .20 .20 .0.15 .3 .8 1 x p 40 IgT 32.0 32.0 32.0 37.0 42.0 42.0 42.0 42.0 42.0 52.0	Standard t	hread lengths	(full thread =	 	al thread = IgT)				
ds k p T-STAR plu Ls Nom. dim. 50 55 60 65 70 75 80 90	core diamete permissible to chank diamet permissible to height of hea thread pitch permissible to us size min. 48.5 53.5 58.5 63.5 68.5 68.5 73.5 78.5 88.5	r blerance ter blerance d, max. blerance max. 51.0 56.0 61.0 66.0 71.0 76.0 81.0	$5 \\ \pm 0 \\ 5. \\ \pm 0 \\ 4 \\ \pm 0. \\ 74 \\ 1 \\ 1 \\ 9 \\ 46.0 \\ 51.0 \\ 56.0 \\ 61.0 \\ 61.0 \\ 70.0 \\ 70.0 \\ 80.0 \\ 80.0 \\ 80.0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $.0 .20 .20 .0.15 .3 .8 1 x p 40 IgT 32.0 32.0 37.0 37.0 42.0 42.0 42.0 47.0	Standard t	hread lengths	s (full thread =	IgV / partia	al thread = IgT)				
ds k p T-STAR plu Ls Nom. dim. 50 55 60 65 70 70 75 80 90 100	core diamete permissible to chank diamet permissible to height of hea thread pitch permissible to us size min. 48.5 53.5 58.5 63.5 63.5 68.5 73.5 78.5 88.5 88.5 98.5	r blerance ter blerance d, max. blerance max. 51.0 56.0 61.0 66.0 71.0 76.0 81.0 91.5 101.5	5 ± 0 5. ± 0 4 ± 0. ⁻ 1gV 46.0 51.0 56.0 61.0 70.0 80.0 80.0	.0 .20 .20 .0.15 .3 .8 1 x p 40 IgT 32.0 32.0 32.0 37.0 42.0 42.0 42.0 42.0 52.0 57.0	Standard t	hread lengths		IgV / partia	al thread = IgT)				
ds k p T-STAR plu Ls Nom. dim. 50 55 60 65 70 75 80 90 100 110	core diamete permissible to chank diamet permissible to height of hea thread pitch permissible to is size min. 48.5 53.5 58.5 63.5 63.5 63.5 68.5 73.5 78.5 88.5 98.5 108.5	r olerance ter olerance d, max. olerance max. 51.0 56.0 61.0 66.0 71.0 76.0 81.0 91.5 101.5 111.5	5 ± 0 5. ± 0 4 ± 0 1 4 1gV 46.0 51.0 56.0 61.0 70.0 80.0 80.0 80.0	.0 .20 .20 .0.15 .3 .8 1 x p 40 1gT 32.0 32.0 32.0 37.0 42.0 42.0 42.0 42.0 42.0 57.0 57.0 70.0	Standard t	hread lengths	s (full thread =	IgV / partia	al thread = IgT)				
ds T-STAR plu Ls Nom. dim. 50 55 60 65 70 75 80 90 100 110 120	core diamete permissible to chank diamet permissible to height of hea thread pitch permissible to is size min. 48.5 53.5 63.5 68.5 73.5 88.5 98.5 108.5 118.5	r olerance ter olerance d, max. olerance max. 51.0 56.0 61.0 66.0 71.0 76.0 81.0 91.5 101.5 111.5 121.5	5 ± 0 5. ± 0 4 ± 0. ⁻ 1gV 46.0 51.0 56.0 61.0 70.0 80.0 80.0 80.0 80.0	.0 .20 .20 .60 .0.15 .3 .3 .8 1 x p .40 lgT .32.0 .32.0 .37.0 .42.0 .42.0 .47.0 .52.0 .57.0 .70.0 .70.0 .70.0	Standard t	hread lengths	s (full thread =	IgV / partia	al thread = IgT)				
ds k p T-STAR plu Ls Nom. dim. 50 55 60 65 70 75 80 90 100 110 120 130	core diamete permissible to chank diamete permissible to height of hea thread pitch permissible to size min. 48.5 53.5 63.5 68.5 73.5 88.5 98.5 108.5 118.5 128.0	r olerance ter olerance d, max. olerance max. 51.0 56.0 61.0 66.0 71.0 76.0 81.0 91.5 101.5 111.5 121.5 132.0	5 ± 0 5. ± 0 4 ± 0. ⁻ 1gV 46.0 51.0 56.0 61.0 70.0 80.0 80.0 80.0 80.0	.0 .20 .60 15 .3	Standard t	hread lengths	s (full thread =	IgV / partia	al thread = lgT)				
ds k p T-STAR plu Ls Nom. dim. 50 55 60 65 70 75 80 90 100 110 120 130 140	core diamete permissible to chank diamete permissible to height of hea thread pitch permissible to size min. 48.5 53.5 63.5 63.5 68.5 73.5 88.5 98.5 108.5 118.5 128.0 138.0	r olerance ter olerance d, max. olerance max. 51.0 56.0 61.0 66.0 71.0 76.0 81.0 91.5 101.5 111.5 121.5 132.0 142.0	5 ± 0 5. ± 0 4 ± 0. ⁻ 1gV 46.0 51.0 56.0 61.0 70.0 80.0 80.0 80.0 80.0	.0 .20 .20 .60 .15 .3 .8 1 x p 40 1 gT 32.0	Standard t	hread lengths	Image: second	IgV / partia	al thread = IgT)				
ds k p T-STAR plu Ls Nom. dim. 50 55 60 65 70 75 80 90 100 110 120 130 140 150	core diamete permissible to chank diamete permissible to height of hea thread pitch permissible to us size min. 48.5 53.5 63.5 68.5 73.5 88.5 98.5 108.5 118.5 128.0 138.0 148.0	r olerance ter olerance d, max. olerance max. 51.0 56.0 61.0 66.0 71.0 76.0 81.0 91.5 101.5 111.5 121.5 132.0 142.0 152.0	5 ± 0 5. ± 0 4 ± 0. ⁻ 1gV 46.0 51.0 56.0 61.0 70.0 80.0 80.0 80.0 80.0	.0 .20 .20 .60 .15 .3 .8 1 x p 40 1 x p 40 .1 .2 .3 .8 .3 .8 .1 x p 40 .1 .2 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	Standard t	hread lengths		 	al thread = IgT)				
ds k p T-STAR plu Ls Nom. dim. 50 55 60 65 70 75 80 90 100 110 120 130 140 150 160	core diamete permissible to chank diamete permissible to height of hea thread pitch permissible to is size min. 48.5 53.5 63.5 68.5 73.5 88.5 98.5 108.5 118.5 128.0 138.0 148.0 158.0 178.0	r olerance ter olerance d, max. olerance max. 51.0 56.0 61.0 66.0 71.0 76.0 81.0 91.5 101.5 111.5 121.5 132.0 142.0 162.0 182.0	5 ± 0 5. ± 0 4 ± 0. ⁻ 1gV 46.0 51.0 56.0 61.0 70.0 80.0 80.0 80.0 80.0	.0 .20 .20 .60 .15 .3 .8 1 x p 40 1 x p 40 32.0 32.0 32.0 37.0 42.0 42.0 42.0 42.0 42.0 42.0 57.0 57.0 57.0 70.0 70.0 80.0 80.0 80.0 80.0	Standard t	hread lengths		 	al thread = IgT)				
ds k p T-STAR plu Ls Nom. dim. 50 55 60 65 70 75 80 90 100 110 120 130 140 150 160 180	core diamete permissible to chank diamete permissible to height of hea thread pitch permissible to is size min. 48.5 53.5 63.5 63.5 68.5 73.5 78.5 98.5 108.5 118.5 128.0 138.0 158.0	r olerance ter olerance d, max. olerance max. 51.0 56.0 61.0 66.0 71.0 76.0 81.0 91.5 101.5 111.5 121.5 132.0 142.0 152.0 162.0	5 ± 0 5. ± 0 4 ± 0. ⁻ 1gV 46.0 51.0 56.0 61.0 70.0 80.0 80.0 80.0 80.0	.0 .20 .20 .20 .60 .20 .3.3 .20 .3.8 .1 x p .40 .20 .40 .20 .32.0 .37.0 .37.0 .37.0 .42.0 .42.0 .42.0 .42.0 .47.0 .52.0 .57.0 .00 .70.0 .00 .80.0 .80.0 .80.0 .80.0 .80.0 .80.0	Standard t	hread lengths		 	al thread = lgT)				

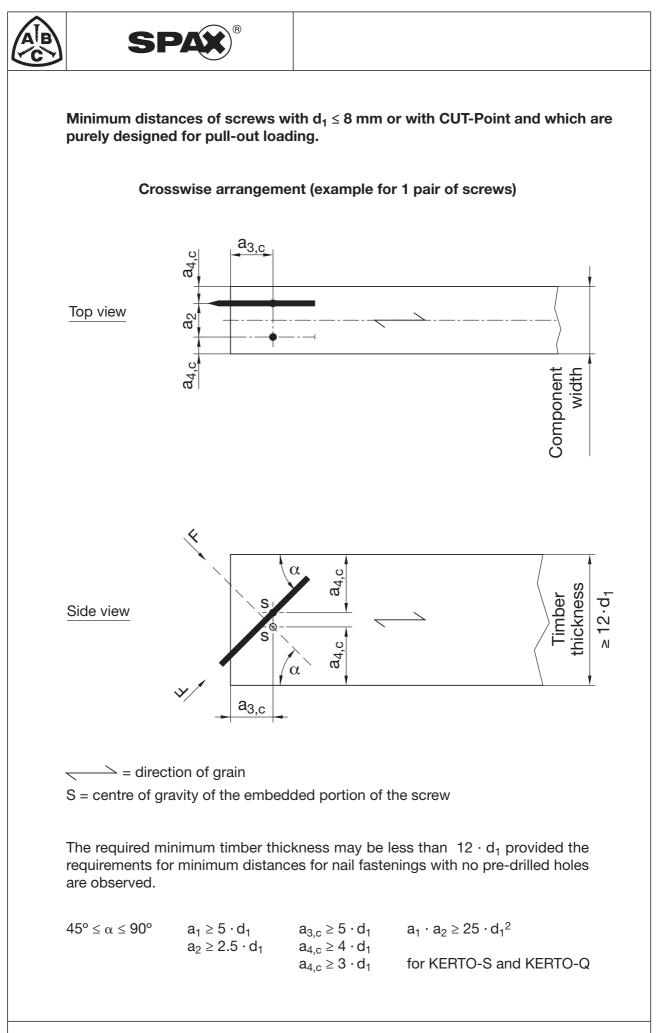
to max. standard length permitted.


Appendix 7




Appendix 8


						Self-drilling screw with full and partial thread Material: cold rolled wire according to ABC Factory Norm						
					M	laterial: colo			•	Factory	v Norm	
		Pan he	ad				Screws of	high car	bon steel			
	ss section A-B Ø dk Guare		k	so so so so so co co co co co co co co co co co co co	p	V ±1,5 35° 35° 35° 35° 35° 35° 35° 35° 35° 35	\overline{v} \overline{A} \overline{B} $\overline{gT \pm 1,5}$		trade "SPA	ufactu e mark XX"	-	
Nominal	diameter		-	.0								
			1 8	.0		1		1				
	thread size	olerance	± 0	.25								
d1	permissible to			0.25 5.5								
d1 dk	permissible to head diamete permissible to	er olerance	15 - 0	5.5 .60								
d1 dk	permissible to head diamete permissible to core diamete	er olerance r	15 - 0 5	5.5 .60 .0								
d1 dk d2	permissible to head diamete permissible to	er olerance r olerance	15 - 0 5 ± 0	5.5 .60 .0 .25								
d1 dk d2	permissible to head diameter permissible to core diameter permissible to	er olerance r olerance ter	15 - 0 5 ± 0 5.	5.5 .60 .0								
d1 dk d2 ds k	permissible to head diameter permissible to core diameter permissible to shank diameter permissible to height of head	er blerance r blerance er blerance	$ \begin{array}{c} 15 \\ -0 \\ 5 \\ \pm 0 \\ 5. \\ \pm 0 \\ 6 \\ \end{array} $	5.5 .60 .0 .25 60 .15 .0								
d1 dk d2 ds k	permissible to head diameter permissible to core diameter permissible to shank diameter permissible to height of head thread pitch	er Derance r Derance Ser Derance d, max.	$ \begin{array}{c} 15 \\ -0 \\ 5 \\ \pm 0 \\ 5. \\ \pm 0 \\ 6 \\ 4 \end{array} $	5.5 .60 .0 .25 60 .15 .0 .8								
d1 dk d2 ds k p	permissible to head diamete permissible to core diameter permissible to shank diamet permissible to height of head thread pitch permissible to	er Derance r Derance Ser Derance d, max.	$ \begin{array}{c} 15 \\ -0 \\ 5 \\ \pm 0 \\ 5. \\ \pm 0 \\ 6 \\ 4 \\ \pm 0. \\ \end{array} $	5.5 .60 .0 .25 60 .15 .0								
d1 dk d2 ds k p	permissible to head diamete permissible to core diameter permissible to shank diamet permissible to height of head thread pitch permissible to	er Derance r Derance Ser Derance d, max.	$ \begin{array}{c} 15 \\ -0 \\ 5 \\ \pm 0 \\ 5. \\ \pm 0 \\ 6 \\ 4 \\ \pm 0. \\ \end{array} $	5.5 .60 .0 .25 60 .15 .0 .8 1 x p	Standard t	hread length	s (full thread =		tial thread =	= lgT)		
d1 dk d2 ds <u>k</u> p <u>T-STAR pl</u> Ls Nom. dim.	permissible to head diamete permissible to core diameter permissible to shank diamet permissible to height of head thread pitch permissible to us size min.	er blerance cer blerance d, max. blerance max.	$ \begin{array}{c} 15 \\ -0 \\ 5 \\ \pm 0 \\ 5. \\ \pm 0 \\ 6 \\ 4 \\ \pm 0. \\ T_{4} \\ IgV \end{array} $	5.5 .60 .0 .25 .60 .15 .0 .8 1 x p 40 IgT	Standard t	hread length	s (full thread =	IgV / par	tial thread =	= lgT)		
d1 dk d2 ds k p T-STAR pl Ls Nom. dim. 50	permissible to head diamete permissible to core diameter permissible to shank diamet permissible to height of head thread pitch permissible to us size min. 48.50	er blerance cer blerance d, max. blerance max. 51.00	$ \begin{array}{c} 15 \\ -0 \\ 5 \\ \pm 0 \\ 5. \\ \pm 0 \\ 6 \\ 4 \\ \pm 0. \\ 1 \\ 1 \\ 9 \\ 4 \\ 6. \\ 1 \\ 9 \\ 4 \\ 6. \\ 1 \\ 9 \\ 4 \\ 6. \\ 1 \\ 9 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	5.5 .60 .0 .25 .60 .125 .0 .15 .0 .8 1 x p .40 .1gT .32.0	Standard t	hread length	s (full thread =	IgV / par	tial thread =	= lgT)		
d1 dk d2 ds k p T-STAR pli Ls Nom. dim. 50 55	permissible to head diamete permissible to core diameter permissible to shank diamet permissible to height of head thread pitch permissible to us size min. 48.50 53.50	er plerance r plerance cer plerance d, max. plerance max. 51.00 56.00	$ \begin{array}{c} 15 \\ -0 \\ 5 \\ \pm 0 \\ 5. \\ \pm 0 \\ 6 \\ 4 \\ \pm 0. \\ 1 \\ 7 \\ 1 \\ 1 \\ 9 \\ 4 \\ 6. \\ 5 \\ 1.0 \\ \end{array} $	5.5 .60 .0 .25 .60 .125 .0 .15 .0 .8 1 x p 40 lgT 32.0 32.0	Standard t	hread length	s (full thread =	 	tial thread =	= lgT)		
d1 dk d2 ds <u>k</u> p T-STAR pl Ls Nom. dim. 50	permissible to head diamete permissible to core diameter permissible to shank diamet permissible to height of head thread pitch permissible to us size min. 48.50	er blerance cer blerance d, max. blerance max. 51.00	$ \begin{array}{c} 15 \\ -0 \\ 5 \\ \pm 0 \\ 5. \\ \pm 0 \\ 6 \\ 4 \\ \pm 0. \\ 1 \\ 1 \\ 9 \\ 4 \\ 6. \\ 1 \\ 9 \\ 4 \\ 6. \\ 1 \\ 9 \\ 4 \\ 6. \\ 1 \\ 9 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	5.5 .60 .0 .25 .60 .125 .0 .15 .0 .8 1 x p .40 .1gT .32.0	Standard t	hread length	s (full thread =	 	tial thread =	= IgT)		
d1 dk d2 ds <u>k</u> p T-STAR pli Ls Nom. dim. 50 55 60 65 70	permissible to head diameter permissible to core diameter permissible to shank diameter permissible to height of head thread pitch permissible to us size min. 48.50 53.50 63.50 68.50	er plerance r plerance d, max. plerance max. 51.00 56.00 61.00 66.00 71.00	$\begin{array}{c} 15\\ -0\\ 5\\ \pm 0\\ 5\\ -0\\ -0\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2$	5.5 60 0.25 60 1.15 .0 .8 1 x p 40 1gT 32.0 37.0 37.0 42.0	Standard t	hread length	s (full thread =	 	tial thread =	= lgT)		
d1 dk d2 ds k p T-STAR pl Ls Nom. dim. 50 55 60 60 65 70 70 75	permissible to head diameter permissible to core diameter permissible to shank diameter permissible to height of head thread pitch permissible to us size min. 48.50 53.50 63.50 63.50 68.50 73.50	er plerance r plerance d, max. plerance d, max. plerance max. 51.00 56.00 61.00 61.00 71.00 76.00	$ \begin{array}{c} 15\\ -0\\ 5\\ \pm 0\\ 5.\\ \pm 0\\ 6\\ 4\\ \pm 0.\\ 7\\ 46.0\\ 51.0\\ 56.0\\ 61.0\\ 61.0\\ 70.0\\ \end{array} $	5.5 60 0.25 60 1.15 .0 8 1 x p 40 1gT 32.0 32.0 37.0 37.0 42.0 42.0 42.0	Standard t	hread length	s (full thread =	IgV / par	tial thread =	= lgT)		
d1 dk d2 ds k p T-STAR pl Ls Nom. dim. 50 55 60 65 70 70 75 80	permissible to head diameter permissible to core diameter permissible to shank diameter permissible to height of head thread pitch permissible to us size min. 48.50 53.50 63.50 68.50 73.50 78.50	er plerance r plerance d, max. plerance d, max. 51.00 56.00 61.00 61.00 71.00 76.00 81.00	$\begin{array}{c} 15\\ -0\\ 5\\ \pm 0\\ 5\\ -0\\ -0\\ -2\\ -0\\ -2\\ -0\\ -2\\ -0\\ -2\\ -0\\ -2\\ -0\\ -2\\ -0\\ -2\\ -0\\ -2\\ -0\\ -2\\ -0\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2$	5.5 .60 .60 .0 .0.25 .60 .15 .0 .8 .1 1 x p .40 IgT .32.0 .37.0 .37.0 .42.0 .42.0 .42.0 .47.0	Standard t	hread length	s (full thread =	 	tial thread =	= lgT)		
d1 dk d2 ds <u>k</u> p T-STAR pl Ls Nom. dim. 50 55 60 65 70 75 80 90	permissible to head diamete permissible to core diameter permissible to shank diamet permissible to height of head thread pitch permissible to us size min. 48.50 53.50 63.50 63.50 68.50 73.50 78.50 88.50	r blerance r clerance clerance d, max. blerance max. 51.00 56.00 61.00 61.00 61.00 71.00 76.00 81.00 91.50	$\begin{array}{c} 15\\ -0\\ 5\\ \pm 0\\ 5\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0$	5.5 .60 .60 .0 .0.25 .60 .15 .0 .8 .1 1 x p .40 IgT .32.0 .37.0 .37.0 .42.0 .42.0 .42.0 .47.0 .52.0 .0	Standard t	hread length	s (full thread =		tial thread =	= lgT)		
d1 dk d2 ds T-STAR pl Ls Nom. dim. 50 55 60 65 70 75 80 90 100	permissible to head diamete permissible to core diameter permissible to shank diamet permissible to height of head thread pitch permissible to us size min. 48.50 53.50 63.50 63.50 68.50 73.50 78.50 88.50 98.50	er blerance r blerance cer blerance d, max. blerance max. 51.00 56.00 61.00 66.00 71.00 76.00 81.00 91.50 101.50	$\begin{array}{c} 15\\ -0\\ 5\\ \pm 0\\ 5.\\ \pm 0\\ 6\\ 4\\ \pm 0.\\ 1\\ 7\\ 0\\ 5\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 7\\ 0.0\\ 8\\ 0.0\\ 8\\ 0.0\\ \end{array}$	5.5 .60 .60 .0 .0.25 .60 .15 .0 .8 .1 1 x p .40 IgT .32.0 .37.0 .37.0 .42.0 .42.0 42.0 .47.0 52.0 .57.0	Standard t	hread length	s (full thread =		tial thread =	= lgT)		
d1 dk d2 ds ts T-STAR pl Ls Nom. dim. 50 55 60 65 70 75 80 90	permissible to head diamete permissible to core diameter permissible to shank diamet permissible to height of head thread pitch permissible to us size min. 48.50 53.50 63.50 63.50 68.50 73.50 88.50 98.50 108.50	er blerance r blerance cer blerance d, max. blerance max. 51.00 56.00 61.00 66.00 71.00 76.00 81.00 91.50 101.50 111.50	$\begin{array}{c} 15\\ -0\\ 5\\ \pm 0\\ 5\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0$	5.5 60 0.25 60 1.15 0 8 1 x p 40 1 x p 40 1 x p 40 32.0 32.0 32.0 37.0 42.0 42.0 42.0 57.0 57.0 70.0	Standard t	hread length	s (full thread =	IgV / par	tial thread =	= lgT)		
d1 dk d2 ds k p T-STAR pl Ls Nom. dim. 50 55 60 65 70 65 70 65 70 65 70 75 80 90 100 100 110	permissible to head diamete permissible to core diameter permissible to shank diamet permissible to height of head thread pitch permissible to us size min. 48.50 53.50 63.50 63.50 68.50 73.50 78.50 88.50 98.50	er blerance r blerance cer blerance d, max. blerance max. 51.00 56.00 61.00 66.00 71.00 76.00 81.00 91.50 101.50	15 -0 5 ±0 5. ±0 6 4 ±0.1 1gV 46.0 51.0 56.0 61.0 70.0 80.0 80.0	5.5 .60 .60 .0 .0.25 .60 .15 .0 .8 .1 1 x p .40 IgT .32.0 .37.0 .37.0 .42.0 .42.0 42.0 .47.0 52.0 .57.0	Standard t	hread length	s (full thread =	IgV / par	tial thread =	= lgT)		
d1 dk d2 ds k p T-STAR pl Ls Nom. dim. 50 55 60 55 60 65 70 75 80 90 100 110 120	permissible to head diamete permissible to core diameter permissible to shank diamet permissible to height of head thread pitch permissible to us size min. 48.50 53.50 63.50 68.50 68.50 73.50 78.50 88.50 98.50 108.50 118.50	er blerance r blerance d, max. blerance d, max. blerance max. 51.00 56.00 61.00 66.00 71.00 76.00 81.00 91.50 101.50 111.50 121.50	$\begin{array}{c} 15\\ -0\\ 5\\ \pm 0\\ 5\\ -0\\ -0\\ 5\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0$	5.5 60 0.25 60 1.15 0 8 1 x p 40 1 gT 32.0 32.0 32.0 37.0 42.0 42.0 42.0 47.0 57.0 70.0 70.0	Standard t	hread length	s (full thread =		tial thread =	= lgT)		
d1 dk d2 ds k p T-STAR pli Ls Nom. dim. 50 55 60 55 60 65 70 65 70 65 70 75 80 90 100 110 120 120 130 140 150	permissible to head diameter permissible to core diameter permissible to shank diameter permissible to shank diameter permissible to height of head thread pitch permissible to us size min. 48.50 53.50 63.50 68.50 73.50 78.50 88.50 98.50 118.50 128.00 138.00 148.00	er blerance r blerance d, max. blerance d, max. blerance max. 51.00 56.00 61.00 66.00 71.00 76.00 81.00 91.50 101.50 111.50 121.50 132.00 142.00 152.00	$\begin{array}{c} 15\\ -0\\ 5\\ \pm 0\\ 5\\ -0\\ -0\\ 5\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0$	5.5 60 0.25 60 1.15 0 8 1 x p 40 1 x p 40 1 x p 40 32.0 37.0 37.0 37.0 42.0 42.0 42.0 42.0 57.0 57.0 70.0 80.0 80.0 80.0 80.0	Standard t	hread length	s (full thread =		tial thread =	= lgT)		
d1 dk d2 ds k p T-STAR pl Ls Nom. dim. 50 55 60 65 70 55 60 65 70 75 80 90 100 110 120 120 110 120 140 150 160	permissible to head diameter permissible to core diameter permissible to shank diameter permissible to shank diameter permissible to height of head thread pitch permissible to us size min. 48.50 53.50 58.50 63.50 68.50 78.50 88.50 98.50 108.50 118.50 128.00 138.00 158.00	er blerance r blerance d, max. blerance d, max. blerance max. 51.00 56.00 61.00 66.00 71.00 76.00 81.00 91.50 101.50 111.50 121.50 132.00 142.00 162.00	$\begin{array}{c} 15\\ -0\\ 5\\ \pm 0\\ 5\\ -0\\ -0\\ 5\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0$	5.5 60 .60 .0 .25 .0 .60 .15 .0 .0 .15 .0 .8 .1 1 x p .0 40 .0 32.0 .0 32.0 .0 32.0 .0 37.0 .0 42.0 .0 42.0 .0 42.0 .0 57.0 .0 70.0 .0 80.0 .0 80.0 .0	Standard t	hread length	s (full thread =	IgV / par	tial thread =	= lgT)		
d1 dk d2 ds k p T-STAR pli Ls Nom. dim. 50 55 60 55 60 65 70 75 80 65 70 75 80 90 100 110 120 120 120 120 120 120 120 120 120 120	permissible to head diameter permissible to core diameter permissible to shank diameter permissible to shank diameter permissible to height of head thread pitch permissible to us size min. 48.50 53.50 68.50 78.50 88.50 98.50 118.50 128.00 138.00 178.00	er blerance r blerance d, max. blerance d, max. blerance max. 51.00 56.00 61.00 66.00 71.00 76.00 81.00 91.50 101.50 111.50 121.50 132.00 142.00 162.00 182.00	$\begin{array}{c} 15\\ -0\\ 5\\ \pm 0\\ 5\\ -0\\ -0\\ 5\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0$	5.5 60 0.25 60 1.15 0. 8 1 x p 40 1 x p 40 1 x p 40 32.0 30.0 3	Standard t	hread length	s (full thread =	IgV / par	tial thread =	= lgT)		
d1 dk d2 ds k p T-STAR pl Ls Nom. dim. 50 55 60 65 70 55 60 65 70 75 80 90 100 110 120 120 110 120 140 150 160	permissible to head diameter permissible to core diameter permissible to shank diameter permissible to shank diameter permissible to height of head thread pitch permissible to us size min. 48.50 53.50 58.50 63.50 68.50 78.50 88.50 98.50 108.50 118.50 128.00 138.00 158.00	er blerance r blerance d, max. blerance d, max. blerance max. 51.00 56.00 61.00 66.00 71.00 76.00 81.00 91.50 101.50 111.50 121.50 132.00 142.00 162.00	$\begin{array}{c} 15\\ -0\\ 5\\ \pm 0\\ 5\\ -0\\ -0\\ 5\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0$	5.5 60 .60 .0 .25 .0 .60 .15 .0 .0 .15 .0 .8 .1 1 x p .0 40 .0 32.0 .0 32.0 .0 32.0 .0 37.0 .0 42.0 .0 42.0 .0 42.0 .0 57.0 .0 70.0 .0 80.0 .0 80.0 .0	Standard t	hread length	Image: second		tial thread =	= lgT)		


Appendix 9

CERTIFICATE OF COMPLIANCE

No. ÜZ-BWU03-I 14.12.19

Pursuant to Article 25, Paragraph 2, No.2 of the Building Regulations of the State of North Rhine Westphalia (BauO-NRW) as per version dated 1st March 2000, we, hereby, certify that

the building product:	SPAX screws for fastening timber
manufactured at the plant in:	58256 Ennepetal, Germany
of:	ABC Verbindungstechnik GmbH & Co. KG Kölner Strasse 71-77 58256 Ennepetal
ing in accordance with the real	ults of the internal production inspection and the

complies, in accordance with the results of the internal production inspection and the external production inspection carried out by the Material Testing Laboratory of the University of Stuttgart, with the provisions of the

general building authority approval

Z-9.1-449 of the Deutsches Institut für Bautechnik, Berlin.

In accordance with the Conformity Regulations the company is thus entitled to apply the mark of conformity (Ü mark) to the building product manufactured at the plant in

58256 Ennepetal.

Stuttgart, 30.10.2007

Material Testing Laboratory University of Stuttgart Timber Construction Dept. Certification Dept.

Dr. Simon Aicher Academic Director Head of Certification Department