



Public-law institution jointly founded by the federal states and the Federation

**European Technical Assessment Body** for construction products



# **European Technical Assessment**

# ETA-23/0842 of 11 June 2024

English translation prepared by DIBt - Original version in German language

### **General Part**

Technical Assessment Body issuing the **European Technical Assessment:** 

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

fischer FIS EM Plus dynamic

Post-installed fasteners in concrete under fatigue cyclic loading

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen

fischerwerke

21 pages including 3 annexes which form an integral part of this assessment

EAD 330250-01-0601, Edition 10/2023

# **European Technical Assessment ETA-23/0842**

English translation prepared by DIBt



Page 2 of 21 | 11 June 2024

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z44375.24 8.06.01-230/23



Page 3 of 21 | 11 June 2024

### **Specific Part**

## 1 Technical description of the product

The "fischer injection system FIS EM Plus" is a bonded fastener consisting of a cartridge with injection mortar fischer FIS EM Plus and a steel element according to Annex A3.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

### 3 Performance of the product and references to the methods used for its assessment

### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic (Assessment method C: Linearized function)                                                                         | Performance                |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Characteristic fatigue resistance under cyclic tension loading                                                                              |                            |
| Characteristic steel fatigue resistance $\Delta N_{Rk,s,0,n}$ ( $n = 1$ to $n = \infty$ )                                                   |                            |
| Characteristic concrete cone and splitting fatigue resistance $\Delta N_{Rk,c,0,n}$ $\Delta N_{Rk,sp,0,n}$ $(n = 1 \text{ to } n = \infty)$ | See Annex<br>C1, C3 and C4 |
| Characteristic combined pull-out /concrete cone fatigue resistance $\Delta \tau_{Rk,p,0,n}$ ( $n$ = 1 to $n$ = $\infty$ )                   |                            |
| Characteristic fatigue resistance under cyclic shear loading                                                                                |                            |
| Characteristic steel fatigue resistance $\Delta V_{Rk,s,0,n}$ ( $n = 1$ to $n = \infty$ )                                                   |                            |
| Characteristic concrete edge fatigue resistance $\Delta V_{Rk,c,0,n}$ ( $n=1$ to $n=\infty$ )                                               | See Annex                  |
| Characteristic concrete pry out fatigue resistance $\Delta V_{Rk,cp,0,n}$ ( $n$ = 1 to $n$ = $\infty$ )                                     | C2, C3 and C4              |

Z44375.24 8.06.01-230/23



Page 4 of 21 | 11 June 2024

| Essential characteristic (Assessment method C: Linearized function)          | Performance           |  |
|------------------------------------------------------------------------------|-----------------------|--|
| Characteristic fatigue resistance under cyclic combined tension and shear lo | pading                |  |
| Characteristic steel fatigue resistance $a_s$ ( $n = 1$ to $n = \infty$ )    | See Annex<br>C1 to C4 |  |
| Load transfer factor for cyclic tension and shear loading                    |                       |  |
| Load transfer factor $\psi_{FN}, \psi_{FV}$                                  | See Annex<br>C1 to C4 |  |

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document No. 330250-01-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

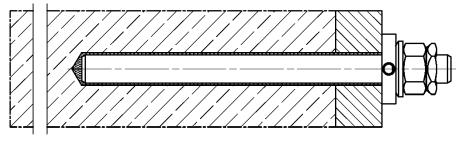
Issued in Berlin on 11 June 2024 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock

Head of Section

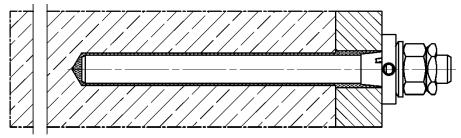
Stiller

Z44375.24 8.06.01-230/23



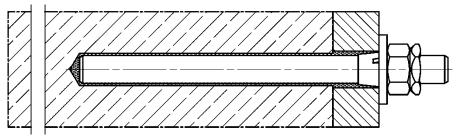

## Installation conditions

### fischer anchor rod FIS A or RG M with fischer injection system FIS EM Plus


Pre-positioned installation with dynamic set (annular gap filled with mortar)

Size: M12, M16, M20, M24



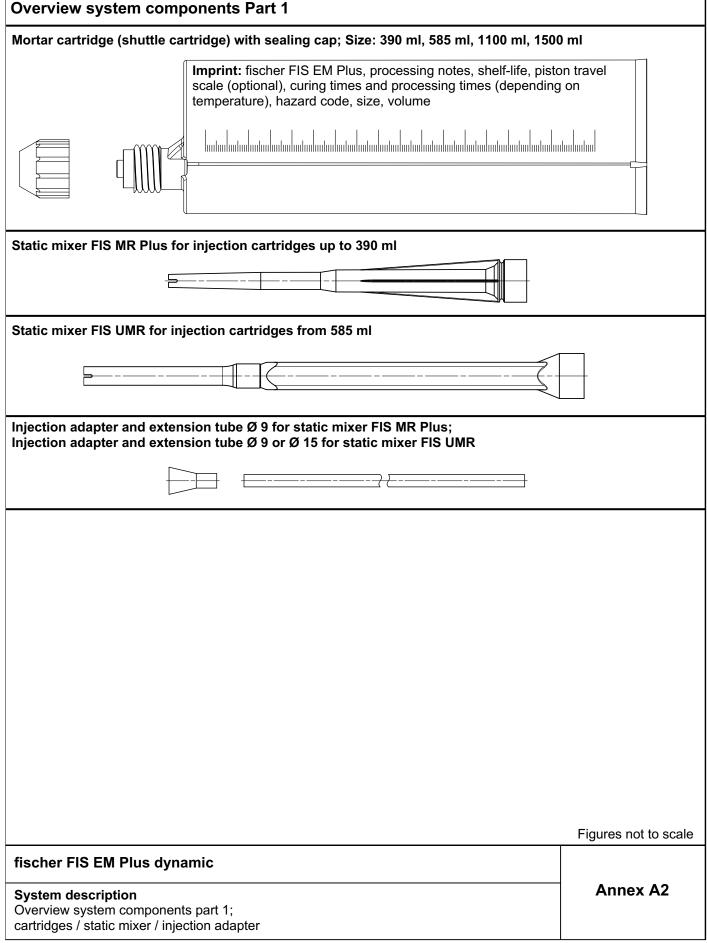

Push through installation with dynamic set (annular gap filled with mortar)

Size: M12, M16, M20, M24

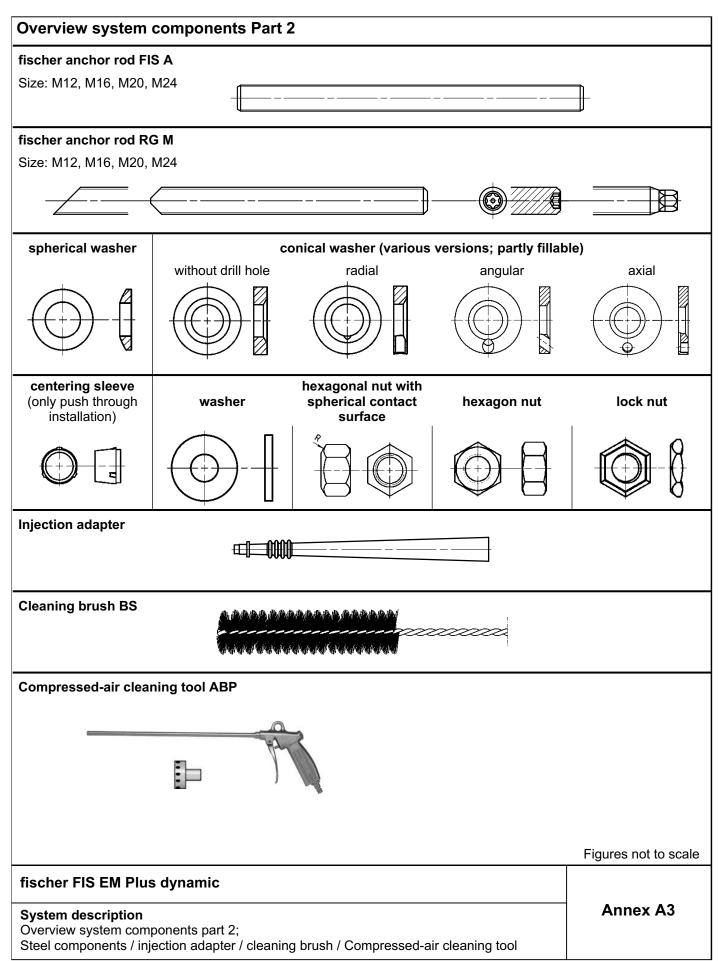


Push through installation with washer and centering sleeve (annular gap filled with mortar)

Size: M12, M16, M20, M24




Figures not to scale


Froduct description Installed condition

Annex A1











| Part | Designation                                   | Material                                                                                                                             |                                                                                                                                                                       |  |  |  |  |
|------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1    | Injection cartridge                           | Mortar, hardener, filler                                                                                                             |                                                                                                                                                                       |  |  |  |  |
|      |                                               | Steel                                                                                                                                | Stainless steel R                                                                                                                                                     |  |  |  |  |
|      | Steel grade                                   | zinc plated                                                                                                                          | acc. to EN 10088-1:2023<br>Corrosion resistance class CRC III<br>acc. to EN 1993-1-4:2006+A1:2015                                                                     |  |  |  |  |
| 2    | fischer anchor rod<br>FIS A or RG M           | Property class 8.8;<br>EN ISO 898-1:2013<br>zinc plated $\geq$ 5 $\mu$ m<br>EN ISO 4042:2022<br>$f_{uk} \leq$ 1000 N/mm <sup>2</sup> | Property class 70<br>EN ISO 3506-1:2020<br>1.4401 (M12 to M24)<br>1.4062 (M12 and M16)<br>1.4362 (M12 and M16)<br>EN 10088-1:2023<br>$f_{uk} \le 1000 \text{ N/mm}^2$ |  |  |  |  |
| 3    | Centering sleeve                              | Plastic                                                                                                                              |                                                                                                                                                                       |  |  |  |  |
| 4a   | Washer<br>ISO 7089:2000                       |                                                                                                                                      | 1.4401; 1.4404; 1.4578;<br>1.4571; 1.4439; 1.4362;<br>EN 10088-1:2023                                                                                                 |  |  |  |  |
| 4b   | Fillable conical washer similar to DIN 6319-G | zinc plated ≥ 5 μm,<br>EN ISO 4042: 2022                                                                                             | 1.4401; 1.4404; 1.4578;<br>1.4571; 1.4439; 1.4362;<br>EN 10088-1:2023                                                                                                 |  |  |  |  |
| 5    | Spherical washer                              | zinc plated ≥ 5 μm,<br>EN ISO 4042: 2022                                                                                             | 1.4401; 1.4404; 1.4578;<br>1.4571; 1.4439; 1.4362;<br>EN 10088-1:2023                                                                                                 |  |  |  |  |
| 6a   | Hexagon nut                                   | Property class 8;                                                                                                                    | Property class 80                                                                                                                                                     |  |  |  |  |
| 6b   | Hexagonal nut with spherical contact surface  | EN ISO 898-2:2022<br>zinc plated ≥ 5 μm,<br>EN ISO 4042: 2022                                                                        | EN ISO 3506-1:2020<br>1.4401; 1.4404; 1.4578;<br>1.4571; 1.4439; 1.4362;<br>EN 10088-1:2023                                                                           |  |  |  |  |
| 7    | Lock nut                                      | zinc plated ≥ 5 μm,<br>EN ISO 4042: 2022                                                                                             | 1.4401; 1.4404; 1.4578;<br>1.4571; 1.4439; 1.4362;<br>EN 10088-1:2023                                                                                                 |  |  |  |  |

| fischer FIS EM Plus dynamic   |          |
|-------------------------------|----------|
| Product description Materials | Annex A4 |



# Specifications of intended use part 1

**Table B1.1:** Overview use and performance categories injection mortar system

|                                                                                                                                                                                                   |                             | FIS EM Plus with                                              |                                                                            |                                                                       |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|--|
|                                                                                                                                                                                                   |                             | fischer anchor ro                                             |                                                                            | fischer anchor rod RG M                                               |  |  |  |
|                                                                                                                                                                                                   |                             | Steel, zinc plated M12 + M16                                  |                                                                            | Stainless steel R M12 - M24                                           |  |  |  |
| Hammer drilling with standard drill bit  Hammer drilling with hollow drill bit  (fischer "FHD", Heller "Duster Expert"; Bosch "Speed Clean"; Hilti "TE-CD, TE-YD"; DreBo "D-Plus"; DreBo "D-Max") |                             | Nominal drill bit diameter<br>14 mm to 18 mm                  | (d <sub>0</sub> )                                                          | Nominal drill bit diameter (d <sub>0</sub> )<br>14 mm to 28 mm        |  |  |  |
| Diamond drilling                                                                                                                                                                                  |                             | no performance assessed                                       |                                                                            |                                                                       |  |  |  |
| Fatigue load, in                                                                                                                                                                                  | uncracked concrete concrete | Steel, zinc plated:<br>M12 and M16                            |                                                                            | Stainless steel R:<br>M12, M16, M20 and M24                           |  |  |  |
| Design method I acc. to EOTA TR                                                                                                                                                                   | R 061:2023                  | n = 1 to n = ∞                                                |                                                                            |                                                                       |  |  |  |
| Design method I acc. to EOTA TR                                                                                                                                                                   |                             | n = ∞                                                         |                                                                            |                                                                       |  |  |  |
| Use I1 de                                                                                                                                                                                         | ry or wet concrete          | M12, M16, M20 and M24                                         |                                                                            |                                                                       |  |  |  |
| Installation direc                                                                                                                                                                                | tion                        | D3  Downwards, horizontal and upwards (overhead) installation |                                                                            |                                                                       |  |  |  |
| Installation meth                                                                                                                                                                                 | od                          | pre-position                                                  | ned or push                                                                | through installation                                                  |  |  |  |
| Installation temp                                                                                                                                                                                 | erature                     | FIS EM Plus: $T_{i,min} = -5$ °C to $T_{i,max} = +40$ °C      |                                                                            |                                                                       |  |  |  |
|                                                                                                                                                                                                   | Temperature range I:        | -40 °C to +40 °C                                              |                                                                            | x. short term temperature +40 °C;<br>x. long term temperature +24 °C) |  |  |  |
| In-service temperature                                                                                                                                                                            | Temperature range II:       | -40 °C to +60 °C                                              | (max. short term temperature +60 °C;<br>max. long term temperature +35 °C) |                                                                       |  |  |  |
|                                                                                                                                                                                                   | Temperature range III:      | -40 °C to +72 °C                                              |                                                                            | x. short term temperature +72 °C;<br>x. long term temperature +50 °C) |  |  |  |

| fischer FIS EM Plus dynamic        |          |
|------------------------------------|----------|
| Intended use Specifications part 1 | Annex B1 |



## Specifications of intended use part 2

### Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibers of strength classes C20/25 to C50/60 according to EN 206:2013+A2:2021.

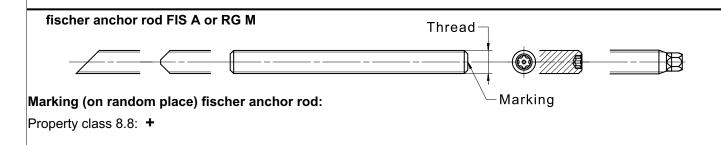
### Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel R).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance classes to Annex A4 Table A4.1.

### Design:

- Fastenings have to be designed by a responsible engineer with experience of concrete anchor design.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- · Anchorages have to be designed in accordance with:
  - EN 1992-4:2018 and
  - EOTA Technical Report TR 061 "Design method for fasteners in concrete under fatigue cyclic loading", Edition 2023.
- Static and quasi-static loading see ETA-17/0979 of 22.04.2024.
- Fastenings shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
- Fastenings in stand-off installation or with a grout layer are not covered by this European Technical Assessment (ETA).

### Installation:


- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: The hole shall be filled with mortar.
- · Fastening depth should be marked and adhered to on installation.
- If only tension loads are involved in the application, the annular gap does not need to be filled.
- Overhead installation is allowed.
- Setting the fastener with clearance between concrete and anchor plate (only if the fastener is loaded in axial direction)

| fischer FIS EM Plus dynamic |          |
|-----------------------------|----------|
| Intended use                | Annex B2 |
| Specifications part 2       |          |

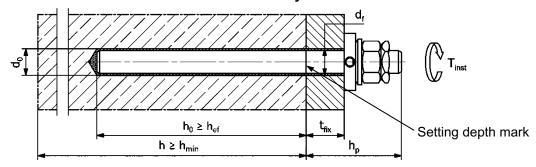


**Table B3.1:** Installation parameters for fischer anchor rods in combination with injection mortar system FIS EM Plus

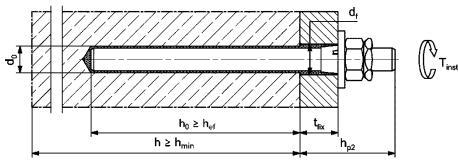
| fischer anchor rods                                      |                             |                                           | Thread    | M12                   | M16                               | M20                               | M24                               |  |
|----------------------------------------------------------|-----------------------------|-------------------------------------------|-----------|-----------------------|-----------------------------------|-----------------------------------|-----------------------------------|--|
| Material                                                 |                             |                                           |           |                       | ed steel or<br>s steel R          | stainles                          | s steel R                         |  |
| Nominal drill hole dia                                   | ameter                      | $d_0$                                     |           | 14                    | 18                                | 24                                | 28                                |  |
| Drill hole depth                                         |                             | $h_0$                                     |           |                       | h <sub>0</sub> =                  | = h <sub>ef</sub>                 |                                   |  |
| Effective embedmen                                       | nt depth                    | depth h <sub>ef, min</sub>                |           | 70                    | 80                                | 90                                | 96                                |  |
| Design method I                                          |                             | $h_{\text{ef, max}}$                      |           | 240                   | 320                               | 400                               | 480                               |  |
| Effective embedmen                                       | nt depth                    | h <sub>ef, min</sub>                      |           | 95                    | 125                               | 160                               | 190                               |  |
| Design method II                                         |                             | $h_{\text{ef, max}}$                      |           | 240                   | 320                               | 400                               | 480                               |  |
| Minimum spacing and minimum edge distance                |                             | S <sub>min</sub><br>=<br>C <sub>min</sub> | [mm]      | 55                    | 65                                | 85                                | 105                               |  |
| Diameter of the clearance hole of the fixture            | pre-positioned installation | $d_{f}$                                   | _         | 14-16                 | 18-20                             | 22-26                             | 26-30                             |  |
|                                                          | push through installation   | $d_f$                                     |           | 15-16                 | 19-20                             | 25-26                             | 29-30                             |  |
| Et a det la cons                                         |                             | $t_{\sf fix,min}$                         | ]         | 6                     | 8                                 | 10                                | 12                                |  |
| Fixture thickness                                        |                             | $t_{fix,max}$                             |           | 200                   |                                   |                                   |                                   |  |
| Minimum thickness of concrete member                     |                             | $h_{min}$                                 |           | h <sub>ef</sub> + 30  | h <sub>ef</sub> + 2d <sub>0</sub> | h <sub>ef</sub> + 2d <sub>0</sub> | h <sub>ef</sub> + 2d <sub>0</sub> |  |
| Installation with dy                                     | namic set                   |                                           |           |                       |                                   |                                   |                                   |  |
| Protrusion anchor ro<br>RG M without hexag               |                             | $h_{p,min}$                               | [mm]      | 25 + t <sub>fix</sub> | 30 + t <sub>fix</sub>             | 36 + t <sub>fix</sub>             | 43 + t <sub>fix</sub>             |  |
| Protrusion anchor rod RG M (with hexagon head)           |                             | $h_{p,min}$                               | [mm]  -   | 32 + t <sub>fix</sub> | 38 + t <sub>fix</sub>             | 43 + t <sub>fix</sub>             |                                   |  |
| Installation with wa                                     | sher (only with             | stainles                                  | s steel R | 2)                    |                                   |                                   |                                   |  |
| Protrusion anchor rod FIS A or RG M without hexagon head |                             | h <sub>p2,min</sub>                       | [mm]      | 19 + t <sub>fix</sub> | 23 + t <sub>fix</sub>             | 27 + t <sub>fix</sub>             | 32 + t <sub>fix</sub>             |  |
| Protrusion anchor ro<br>(with hexagon head)              |                             | $h_{p2,min}$                              | [mm]  -   | 26 + t <sub>fix</sub> | 31 + t <sub>fix</sub>             | 34 + t <sub>fix</sub>             |                                   |  |
| Required installation                                    | torque                      | T <sub>inst</sub>                         | [Nm]      | 40                    | 60                                | 120                               | 150                               |  |



### Installation conditions see Annex B4


Figures not to scale

| fischer FIS EM Plus dynamic                                                                                                     |          |
|---------------------------------------------------------------------------------------------------------------------------------|----------|
| Intended use Installation parameters fischer anchor rods FIS A and RG M in combination with injection mortar system FIS EM Plus | Annex B3 |




## Installation conditions FIS A or RG M with dynamic set or washer with centering sleeve

Installation conditions FIS A or RG M with dynamic set



Installation conditions FIS A R or RG M R with washer and centering sleeve



Figures not to scale

| fischer FIS EM Plus dynamic                                                                         |          |
|-----------------------------------------------------------------------------------------------------|----------|
| Intended use Installation conditions FIS A or RG M with dynamic set or washer with centering sleeve | Annex B4 |



| Table B5.1:                 | Parameters of the cleaning brush BS (steel brush with steel bristles) |      |    |    |    |    |  |  |
|-----------------------------|-----------------------------------------------------------------------|------|----|----|----|----|--|--|
|                             | The size of the cleaning brush refers to the drill hole diameter      |      |    |    |    |    |  |  |
| Nominal drill hole diameter | $d_0$                                                                 | [mm] | 14 | 18 | 24 | 28 |  |  |
| Steel brush diameter        | d <sub>b</sub>                                                        | [mm] | 16 | 20 | 26 | 30 |  |  |

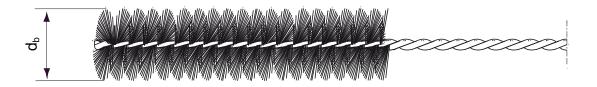



Table B5.2: Conditions for use static mixer without an extension tube

| Nominal drill hole diameter              | d <sub>o</sub> | [mm] | 14    | 18    | 24    | 28    |
|------------------------------------------|----------------|------|-------|-------|-------|-------|
| Drill hole depth h <sub>0</sub> by using | FIS<br>MR Plus | [mm] | ≤ 120 | ≤ 150 | ≤ 190 | ≤ 210 |
|                                          | FIS<br>UMR     | [mm] | ≤ 90  | ≤ 180 | ≤ 220 | ≤ 250 |

Table B5.3: Maximum processing time of the mortar and minimum curing time

During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature.

| Temperature at anchoring base [°C] | Maximum processing time t <sub>work</sub> | Minimum curing time <sup>1)</sup><br>t <sub>cure</sub> |
|------------------------------------|-------------------------------------------|--------------------------------------------------------|
| > -5 to ±0 <sup>2</sup>            | 240 min                                   | 200 h                                                  |
| > ±0 to +5 <sup>2</sup>            | 150 min                                   | 90 h                                                   |
| > +5 to +10                        | 120 min                                   | 40 h                                                   |
| > +10 to +20                       | 30 min                                    | 18 h                                                   |
| > +20 to +30                       | 14 min                                    | 10 h                                                   |
| > +30 to +40                       | 7 min                                     | 5 h                                                    |

<sup>1)</sup> In wet concrete the curing times must be doubled

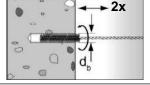
| fischer FIS EM Plus dynamic                                               |          |
|---------------------------------------------------------------------------|----------|
| Intended use Cleaning brush (steel brush) Processing time and curing time | Annex B5 |

<sup>2)</sup> Minimal cartridge temperature +5°C



## Installation instructions part 1; injection mortar system FIS EM Plus

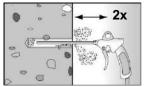
Drilling and cleaning the hole (hammer drilling with standard drill bit)


Drill the hole. Nominal drill hole diameter  $d_0$  and drill hole depth  $h_0$  see **Table B3.1**.

2

Cleaning the drill hole: Blow out the drill hole twice, with oil free compressed air ( $p \ge 6$  bar).




3



2x

Brush the drill hole twice. For drill hole diameter ≥ 30 mm use a power drill. For deep holes use an extension. Corresponding brushes see **Table B5.1**.

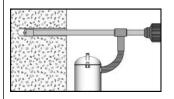
4



Cleaning the drill hole: Blow out the drill hole twice, with oil free compressed air ( $p \ge 6$  bar).



### Go to step 5 Annex B7


Drilling and cleaning the hole (hammer drilling with hollow drill bit)

1



Check a suitable hollow drill (see **Table B1.1**) for correct operation of the dust extraction.

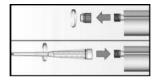
2



Use a suitable dust extraction system, e. g. fischer FVC 35 M or a comparable dust extraction system with equivalent performance data.

Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Nominal drill hole diameter  $\mathbf{d}_0$  and drill hole depth  $\mathbf{h}_0$  see **Table B3.1**.

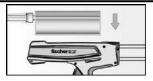
Go to step 5 Annex B7.


| fischer FIS EM Plus dynamic                                                        |          |
|------------------------------------------------------------------------------------|----------|
| Intended use Installation instructions part 1; injection mortar system FIS EM Plus | Annex B6 |



## Installation instructions part 2; injection mortar system FIS EM Plus

## Preparing the cartridge


5



Remove the sealing cap.

Screw on the static mixer (the spiral in the static mixer must be clearly visible).

6





Place the cartridge into the dispenser.

7





Extrude approximately 10 cm of material out until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey.

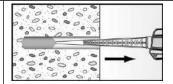
Go to step 8 (Pre-positioned installation Annex B8 or push through installation Annex B9).

| fischer | FIS | ΕM | Plus | dyn | amic |
|---------|-----|----|------|-----|------|
|         |     |    |      |     |      |

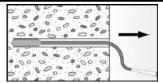
### Intended use

Installation instructions part 2; injection mortar system FIS EM Plus

Annex B7

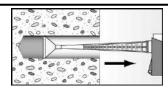



## Installation instructions part 3, injection mortar system FIS EM Plus

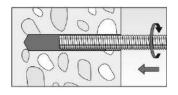

## Pre-positioned installation

8

9

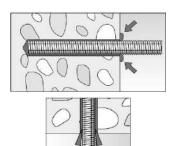



Fill approximately 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and avoid bubbles.




The conditions for mortar injection without extension tube can be found in **Table B5.2** 

For deeper drill holes, than those mentioned in **Table B5.2**, use a suitable extension tube.




For overhead installation or deep holes ( $h_0 > 250$ mm) use an injection-adapter.



Only use clean and oil-free metal parts.

Mark the setting depth of the anchor rod. Push the fischer anchor rod down to the bottom of the hole, turning it slightly while doing so.




After inserting the anchor rod, excess mortar must be emerged around the anchor element. If not, pull out the anchor element immediately and reinject mortar.

For overhead installations support the anchor rod with wedges (e.g. fischer centering wedges) until the mortar begins to harden.

10

Wait for the specified curing time  $t_{cure}$  see **Table B5.3**.



Attach the component and install the washer and nuts - without centering sleeve.

Tighten the hexagon nut with torque wrench, T<sub>inst</sub> see **Table B3.1**. Tighten lock nut manually, then use wrench to give another quarter or half turn.

12

The gap between anchor and fixture (annular clearance) has to be filled with mortar (FIS HB, FIS SB, FIS V Plus or FIS EM Plus) via the fillable conical washer.

If only tension loads are involved in the application, the annular gap does not necessarily have to be filled.

# fischer FIS EM Plus dynamic

### Intended use

Installation instructions part 3; pre-positioned installation; injection mortar system FIS EM Plus

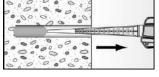
Annex B8



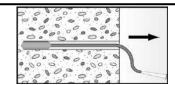
## Installation instructions part 4, injection mortar system FIS EM Plus

## Push through installation

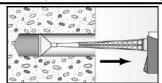
8



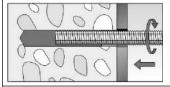

or \_\_\_\_\_


#### Pre-assemble the anchor!

(Position of the conical washer or washer = embedment depth + fixture thickness)


9



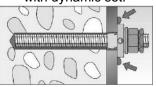

Fill approximately 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and avoid bubbles.



The conditions for mortar injection without extension tube can be found in **Table B5.2** For deeper drill holes, than those mentioned in **Table B5.2**, use a suitable extension tube.



For overhead installation or deep holes (h<sub>0</sub> > 250mm) use an injection-adapter.




Only use clean and oil-free metal parts.

Push the pre-assembled fischer anchor rod into the drill hole until the conical washer or washer is in full contact with the surface, turning it slightly while doing so.

with dynamic set:

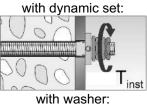
10



with washer:



After inserting the anchor rod with pre-assembled components, excess mortar must be emerged around the anchor element (minimum on one point of the conical washer or washer).


If not, pull out the anchor element immediately and reinject mortar.

11



Wait for the specified curing time  $t_{cure}$  see **Table B5.3**.

12



Tighten the hexagon nut with torque wrench,  $T_{inst}$  see **Table B3.1**. Tighten lock nut manually, then use wrench to give another quarter or half turn.

T<sub>inst</sub>

### fischer FIS EM Plus dynamic

### Intended use

Installation instructions part 4; push through installation; injection mortar system FIS EM Plus

Annex B9



|                                                                                                                                                                                                                                  |                                                    | Required evid                                         | lence                                                                  |                                   |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------|--|
|                                                                                                                                                                                                                                  |                                                    | Number of load c                                      |                                                                        |                                   |  |
| n ≤ 10 <sup>4</sup>                                                                                                                                                                                                              | 10 <sup>4</sup> < n ≤ 5 ·                          |                                                       | $5 \cdot 10^6 < n \le 10^8$                                            | n > 10 <sup>8</sup>               |  |
|                                                                                                                                                                                                                                  |                                                    | Tension load                                          | ding                                                                   |                                   |  |
|                                                                                                                                                                                                                                  | Characteristic ste                                 | el fatigue resista $\Delta N_{Rk,s,0,n}$ (8.8)        | nce (zinc plated steel 8.8)<br>[kN]                                    |                                   |  |
| $0.75 \cdot N_{Rk,s,(8.8)} \cdot 0.33 \qquad 0.75 \cdot N_{Rk,s,(8.8)} \cdot 10^{(-0.12 \cdot \log(n))} \\ \leq 0.75 \cdot N_{Rk,s,(8.8)} \cdot 0.33 \qquad 0.75 \cdot N_{Rk,s,(8.8)} \cdot 10^{(-0.438 - 0.057 \cdot \log(n))}$ |                                                    |                                                       |                                                                        | 0,75·N <sub>Rk,s,(8.8)</sub> ·0,1 |  |
| Char                                                                                                                                                                                                                             | acteristic steel fatigu                            | ie resistance (sta<br>ΔN <sub>Rk,s,0,n</sub> (R-70    | ninless steel R, property class<br>) [kN]                              | 70)                               |  |
| $0,75 \cdot N_{Rk,s,(R-70)} \cdot 0,33$                                                                                                                                                                                          | 0,75·N <sub>Rk,s,(R-70)</sub> ·10 <sup>(-0,1</sup> |                                                       | $0.75 \cdot N_{Rk,s,(R-70)} \cdot 10^{(-0.469 - 0.043 \cdot \log(n))}$ | 0,75·N <sub>Rk,s,(R-70)</sub> ·0, |  |
| C                                                                                                                                                                                                                                | haracteristic combin                               | ed pull-out / con                                     | crete cone fatigue resistance,                                         |                                   |  |
|                                                                                                                                                                                                                                  |                                                    | cracked and crac                                      |                                                                        |                                   |  |
|                                                                                                                                                                                                                                  | Characteristic                                     | Δτ <sub>Rk,p,ucr,0,n</sub> [ <b>N</b> /               | n uncracked concrete<br>mm²]                                           |                                   |  |
| $\tau_{Rk,ucr} \cdot 0,575$                                                                                                                                                                                                      | $	au_{ m Rk,ucr} \cdot 10^{(-0,06)}$               | $\cdot \log(n)$ $	au$                                 | $r_{Rk,ucr} \cdot 10^{(-0,207-0,029 \cdot \log{(n)})}$                 | $\tau_{Rk,ucr} \cdot 0,35$        |  |
|                                                                                                                                                                                                                                  | Characterist                                       |                                                       | in cracked concrete                                                    |                                   |  |
|                                                                                                                                                                                                                                  |                                                    | $\Delta 	au_{Rk,p,cr,0,n}$ [N/r                       | nm-j                                                                   |                                   |  |
| $\tau_{\text{Rk,cr}} \cdot 0,575$ $\tau_{\text{Rk,cr}} \cdot 10^{(-0,06 \cdot \log{(n)})} \qquad \tau_{\text{Rk,cr}} \cdot 10^{(-0,207 - 0,029 \cdot \log{(n)})}$                                                                |                                                    |                                                       |                                                                        | $\tau_{Rk,cr} \cdot 0{,}35$       |  |
|                                                                                                                                                                                                                                  |                                                    |                                                       | splitting fatigue resistance                                           |                                   |  |
|                                                                                                                                                                                                                                  | Characteristic concr                               | •                                                     | tance in uncracked concrete                                            |                                   |  |
|                                                                                                                                                                                                                                  |                                                    | ΔN <sub>Rk,c/sp,ucr,0,n</sub>                         | [KN]                                                                   |                                   |  |
| $N_{Rk,c/sp,ucr} \cdot 0,66$                                                                                                                                                                                                     | $N_{Rk,c/sp,ucr} \cdot 0,50$                       |                                                       |                                                                        |                                   |  |
|                                                                                                                                                                                                                                  | Characteristic cond                                | crete fatigue resis $\Delta N_{Rk,c/sp,cr,0,n}$       | stance in cracked concrete<br>[kN]                                     |                                   |  |
| $N_{Rk,c/sp,cr} \cdot 0,66$                                                                                                                                                                                                      | N <sub>Rk,c/s</sub>                                | <sub>p,cr</sub> · 1,1 · <i>n</i> <sup>- 0,055</sup> ≥ | ≥ N <sub>Rk,c/sp,cr</sub> · 0,50                                       | $N_{Rk,c/sp,cr} \cdot 0,50$       |  |
|                                                                                                                                                                                                                                  |                                                    | nents and load t                                      | ransfer factor                                                         |                                   |  |
| xponent for combined                                                                                                                                                                                                             |                                                    | NA4C                                                  | MOO                                                                    | NAO 4                             |  |
| у о Г 1                                                                                                                                                                                                                          | M12<br>0,5                                         | M16                                                   | 0,7                                                                    | M24                               |  |
| $\alpha_{s} = \alpha_{sn} \mid [-] \mid$ pad transfer factor                                                                                                                                                                     | 0,0                                                |                                                       | U, I                                                                   |                                   |  |
| Ψ <sub>FN</sub> [-]                                                                                                                                                                                                              |                                                    |                                                       | 0,5                                                                    |                                   |  |
|                                                                                                                                                                                                                                  | ETA-17/0979 of 22 04                               | .2024. for τ <sub>P</sub> . (M2                       | $4-R-70 \le 0.85 \cdot \tau_{Rk} \text{ (M20-R-70)}$                   |                                   |  |
|                                                                                                                                                                                                                                  | ETA-17/0979 of 22.0                                |                                                       |                                                                        |                                   |  |
| ischer FIS EM Plus                                                                                                                                                                                                               | dynamic                                            |                                                       |                                                                        |                                   |  |
| Performance<br>Essential characteristic                                                                                                                                                                                          |                                                    | e loading;                                            |                                                                        | Annex C1                          |  |
| Design method I accor                                                                                                                                                                                                            |                                                    | -                                                     |                                                                        |                                   |  |
| 96600.24                                                                                                                                                                                                                         |                                                    |                                                       |                                                                        | 8.06.01-2                         |  |



| Table C2.1: Esser                                                                                                                                                                                                                                     | ntial characte           | ristics under shear t                                     | atigue loading for FIS EI                                          | M Plus                           |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------|--------------------------------------------------------------------|----------------------------------|--|
|                                                                                                                                                                                                                                                       |                          | according to TR 061                                       | •                                                                  | vi i ius,                        |  |
|                                                                                                                                                                                                                                                       |                          | Required evide                                            | nce                                                                |                                  |  |
|                                                                                                                                                                                                                                                       |                          | Number of load cyc                                        | eles (n)                                                           |                                  |  |
| $n \le 10^4$                                                                                                                                                                                                                                          | 1                        | $0^4 < n \le 5 \cdot 10^6$                                | $5 \cdot 10^6 < n \le 10^8$                                        | $n > 10^8$                       |  |
|                                                                                                                                                                                                                                                       |                          | Shear loadin                                              | g                                                                  |                                  |  |
|                                                                                                                                                                                                                                                       | Characteristic           | steel fatigue resistan $\Delta V_{Rk,s,0,n}$ (8.8) [I     | ce (zinc plated steel 8.8)<br>(N]                                  |                                  |  |
| $V_{Rk,s,(8.8)} \cdot 0,23 \qquad V_{Rk,s,(8.8)} \cdot 10^{\left(-0,147 \cdot \log{(n)}\right)} \qquad V_{Rk,s,(8.8)} \cdot 10^{\left(-0,573 - 0,068 \cdot \log{(n)}\right)} \\ \leq V_{Rk,s,(8.8)} \cdot 0,23 \qquad \geq V_{Rk,s,(8.8)} \cdot 0,08$ |                          |                                                           |                                                                    | (n)) $V_{Rk,s,(8.8)} \cdot 0,08$ |  |
| Charac                                                                                                                                                                                                                                                | teristic steel fa        | atigue resistance (stair<br>ΔV <sub>Rk,s,0,n</sub> (R-70) | ⊔<br>nless steel R, property class<br>[kN]                         | s 70)                            |  |
| $V_{Rk,s,(R-70)}\cdot 0,31$                                                                                                                                                                                                                           | V <sub>Rk,s,(R-70)</sub> | $\cdot \ 10^{(-0,042-0,118 \cdot \log{(n)})}$             | $V_{\text{Rk,s,(R-70)}} \cdot 10^{(-0.461 - 0.056 \cdot \log(n))}$ | $V_{Rk,s,(R-70)} \cdot 0,12$     |  |
| Characterist                                                                                                                                                                                                                                          | ic concrete pry          | y out fatigue resistanc<br>ΔV <sub>Rk,cp,0,n</sub> [kN    | e in cracked and uncracked                                         | concrete                         |  |
| $V_{Rk,cp} \cdot 0,574$ $V_{Rk,cp} \cdot 1,2 \cdot n^{-0,08} \ge V_{Rk,cp} \cdot 0,50$ $V_{Rk,cp} \cdot 0,50$                                                                                                                                         |                          |                                                           |                                                                    |                                  |  |
| Characteris                                                                                                                                                                                                                                           | tic concrete e           | dge fatigue resistance<br>ΔV <sub>Rk,c,0,n</sub> [kN]     | in cracked and uncracked                                           | concrete                         |  |
| V <sub>Rk,c</sub> · 0,574                                                                                                                                                                                                                             | V <sub>Rk,c</sub> · 0,50 |                                                           |                                                                    |                                  |  |
|                                                                                                                                                                                                                                                       |                          | Exponents, load trans                                     | sfer factor                                                        |                                  |  |
| Exponent for combined loa                                                                                                                                                                                                                             | nding, steel failu       | -                                                         |                                                                    |                                  |  |
|                                                                                                                                                                                                                                                       | M12                      | M16                                                       | M20                                                                | M24                              |  |
| $\alpha_{s} = \alpha_{sn}$ [-]                                                                                                                                                                                                                        | 0,5                      |                                                           | 0,7                                                                |                                  |  |
| Exponent for combined loa                                                                                                                                                                                                                             | ding, verification       | n regarding failure mod                                   | es other than steel failure                                        |                                  |  |
| α <sub>c</sub> [-]                                                                                                                                                                                                                                    |                          |                                                           | 1,5                                                                |                                  |  |
| Load transfer factor                                                                                                                                                                                                                                  |                          |                                                           |                                                                    |                                  |  |
| Ψ <sub>FV</sub> [-]                                                                                                                                                                                                                                   |                          |                                                           | 0,5                                                                |                                  |  |
| V <sub>Rk,s</sub> see ETA-17/0979 of                                                                                                                                                                                                                  | 22.04.2024               |                                                           |                                                                    |                                  |  |
| $V_{Rk,c}$ , $V_{Rk,cp}$ see ETA-17/0                                                                                                                                                                                                                 |                          | )24 and FN 1992-4-2018                                    | 3                                                                  |                                  |  |
| - nk,c, - nk,cp 000 = 171 1770                                                                                                                                                                                                                        | J. J J. 22.04.20         | and _n 1002 4.20 N                                        | •                                                                  |                                  |  |
|                                                                                                                                                                                                                                                       |                          |                                                           |                                                                    |                                  |  |
|                                                                                                                                                                                                                                                       |                          |                                                           |                                                                    |                                  |  |
|                                                                                                                                                                                                                                                       |                          |                                                           |                                                                    |                                  |  |
| fischer FIS EM Plus d                                                                                                                                                                                                                                 | ynamic                   |                                                           |                                                                    |                                  |  |
| Performance Essential characteristics of Design method I according                                                                                                                                                                                    | Annex C2                 |                                                           |                                                                    |                                  |  |

Load transfer factor



0,5

|                                                                       |                                   |         | nder tension and shear fatigung to <b>TR 061; zinc plated st</b> o | •    |  |
|-----------------------------------------------------------------------|-----------------------------------|---------|--------------------------------------------------------------------|------|--|
| Size                                                                  |                                   |         | M12                                                                | M16  |  |
| Tension loading                                                       |                                   |         |                                                                    |      |  |
| Effective embedment depth                                             | h <sub>ef,min</sub>               | [mm]    | 95                                                                 | 125  |  |
| Steel failure                                                         |                                   |         |                                                                    |      |  |
| Characteristic steel fatigue resistance                               | $\Delta N_{\text{Rk},s,0,\infty}$ | [kN]    | 6,1                                                                | 11,3 |  |
| Exponent for combined loading                                         | $\alpha_s = \alpha_{sn}$          | [-]     | 0,5                                                                | 0,7  |  |
| Combined pull-out / concrete co                                       | one failure                       |         |                                                                    |      |  |
| Characteristic bond fatigue $\Delta \tau_{Rk}$                        | ,p,ucr,0,∞ [N                     | mm²]    | $	au_{Rk,ucr}$ .                                                   | 0,35 |  |
| registance                                                            |                                   | /mm²]   | τ <sub>Rk,cr</sub> ·                                               |      |  |
| Concrete cone failure and conc                                        | rete splittin                     | g failu | ire                                                                |      |  |
| Characteristic concrete fatigue                                       | ΔN <sub>Rk,c,0,∞</sub>            | [-]     | 0,5 · N <sub>Rk,c</sub> ¹)                                         |      |  |
| resistance                                                            | $\Delta N_{Rk,sp,0,\infty}$ [-]   |         | ] 0,5 · N <sub>Rk,sp</sub> ¹)                                      |      |  |
| Exponent for combined loading $\alpha_c$                              |                                   | [-]     | 1,5                                                                |      |  |
| Load transfer factor ψ <sub>FN</sub>                                  |                                   | [-]     | 0,5                                                                |      |  |
| Shear loading                                                         |                                   |         |                                                                    |      |  |
| Shear loading, steel failure with                                     | out lever ar                      | m       |                                                                    |      |  |
| Characteristic steel fatigue resistance                               | $\Delta V_{Rk,s,0,\infty}$        | [kN]    | 2,7                                                                | 5,0  |  |
| Exponent for combined loading                                         | $\alpha_s = \alpha_{sn}$          | [-]     | 0,5                                                                | 0,7  |  |
| Concrete pryout failure                                               |                                   |         |                                                                    |      |  |
| Characteristic concrete fatigue resistance ∆V <sub>Rk,cp,0,∞</sub>    |                                   | [kN]    | 0,5 · V <sub>Rk,cp</sub> <sup>1)</sup>                             |      |  |
| Concrete edge failure                                                 |                                   |         |                                                                    |      |  |
| Characteristic concrete fatigue resistance $\Delta V_{Rk,c,0,\infty}$ |                                   | [kN]    | 0,5 · V <sub>Rk,c</sub> 1)                                         |      |  |
| Effective length of fastener                                          | l <sub>f</sub>                    | [mm]    | min (h <sub>ef</sub> ; 12 · d <sub>nom</sub> )                     |      |  |
| Effective outside diameter of the anchor                              | $d_{nom}$                         | [mm]    | 12                                                                 | 16   |  |
| Exponent for combined loading α <sub>c</sub>                          |                                   | [-]     | 1,5                                                                |      |  |

 $<sup>^{1)}</sup>$   $N_{Rk,c}$ ,  $N_{Rk,sp}$ ,  $V_{Rk,c}$  and  $V_{Rk,cp}$  – Essential characteristics for concrete failure under static and quasi-static loading according to ETA-17/0979 of 22.04.2024 and EN 1992-4:2018.

[-]

 $\psi_{\text{FV}}$ 

| fischer FIS EM Plus dynamic                                      |          |
|------------------------------------------------------------------|----------|
| Performance                                                      | Annex C3 |
| Essential characteristics under tension / shear fatigue loading; |          |
| Design method II according to TR 061; zinc plated steel 8.8      |          |



| Table C4.1: | Essential characteristics under tension and shear fatigue loading;        |
|-------------|---------------------------------------------------------------------------|
|             | Design method II according to TR 061; stainless steel R property class 70 |

|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       | ciass 70                                              |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M20                                                   | M24                                                   |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                       |
| h <sub>ef,min</sub>                       | [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 160                                                   | 190                                                   |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                       |
| $\Delta N_{\text{Rk},\text{s},0,\infty}$  | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19,4                                                  | 27,8                                                  |
| $\alpha_s = \alpha_{sn}$                  | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,5 0,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                       |
| one failure                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                       |
| nucr0∞ [N                                 | /mm²]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $	au_{Rk,ucr}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · 0,35                                                |                                                       |
| l                                         | /mm²]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Titiguo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                       |
| rete splittin                             | g failu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                       |
| $\Delta N_{\text{Rk,c,0,}\infty}$         | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,5 · N <sub>F</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1)<br>Rk,c                                            |                                                       |
| $\Delta N_{\text{Rk},\text{sp},0,\infty}$ | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,5 · N <sub>Rk,sp</sub> ¹)                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                       |
| $\alpha_{c}$                              | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                       |
| ΨFN                                       | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                       |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                       |
| out lever a                               | rm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                       |
| $\Delta V_{Rk,s,0,\infty}$                | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10,3                                                  | 14,9                                                  |
| $\alpha_s = \alpha_{sn}$                  | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,7                                                   |                                                       |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                       |
| $\Delta V_{\text{Rk,cp},0,\infty}$        | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,5 · V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rk,cp <sup>1)</sup>                                   |                                                       |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                       |
| $\Delta V_{Rk,c,0,\infty}$                | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,5 · V <sub>Rk,c</sub> 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                       |
| l <sub>f</sub>                            | [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | min (h <sub>ef</sub> ; 12 · d <sub>nom</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                       |
| d <sub>nom</sub>                          | [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24                                                    |                                                       |
| $\alpha_{c}$                              | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                     |                                                       |
| Ψεν                                       | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                       |
|                                           | $\begin{array}{c c} \Delta N_{Rk,s,0,\infty} \\ \alpha_s = \alpha_{sn} \\ \hline \text{one failure} \\ \lambda,p,ucr,0,\infty \\ \hline \lambda,p,ucr,0,\infty \\ \hline \lambda,p,cr,0,\infty \\ \hline \lambda,p,cr,0,\infty \\ \hline \Delta N_{Rk,c,0,\infty} \\ \hline \Delta N_{Rk,sp,0,\infty} \\ \hline \alpha_c \\ \hline \psi_{FN} \\ \hline \text{nout lever an} \\ \Delta V_{Rk,s,0,\infty} \\ \hline \Delta V_{Rk,cp,0,\infty} \\ \hline \Delta V_{Rk,$ | $\Delta N_{Rk,s,0,\infty}  [kN]$ $\alpha_s = \alpha_{sn}  [-]$ one failure $\alpha_{k,p,ucr,0,\infty}  [N/mm^2]$ $\alpha_{k,p,cr,0,\infty}  [N/mm^2]$ $\alpha_{k,p,cr,0,\infty}  [-]$ $\Delta N_{Rk,c,0,\infty}  [-]$ $\alpha_c  [-]$ $\psi_{FN}  [-]$ $\Delta V_{Rk,s,0,\infty}  [kN]$ $\alpha_s = \alpha_{sn}  [-]$ $\Delta V_{Rk,cp,0,\infty}  [kN]$ $\alpha_s = \alpha_{sn}  [-]$ $\Delta V_{Rk,cp,0,\infty}  [kN]$ $\alpha_s = \alpha_{sn}  [-]$ $\alpha_c  [-]$ $\alpha_c  [-]$ $\alpha_c  [-]$ | $\begin{array}{c ccccc} h_{ef,min} & [mm] & 95 \\ \hline \Delta N_{Rk,s,0,\infty} & [kN] & 6,6 \\ \hline \alpha_s = \alpha_{sn} & [-] & 0,5 \\ \hline \textbf{one failure} \\ \hline \alpha_{s,p,ucr,0,\infty} & [N/mm^2] \\ \hline \alpha_{k,p,cr,0,\infty} & [N/mm^2] \\ \hline \textbf{orete splitting failure} \\ \hline \Delta N_{Rk,c,0,\infty} & [-] \\ \hline \Delta N_{Rk,sp,0,\infty} & [-] \\ \hline \alpha_c & [-] \\ \hline \psi_{FN} & [-] \\ \hline \hline \textbf{nout lever arm} \\ \hline \Delta V_{Rk,s,0,\infty} & [kN] & 3,6 \\ \hline \alpha_s = \alpha_{sn} & [-] & 0,5 \\ \hline \Delta V_{Rk,cp,0,\infty} & [kN] \\ \hline \Delta V_{Rk,cp,0,\infty} & [kN] \\ \hline A V_{Rk,c,0,\infty} & [kN] \\ \hline \Delta V_{Rk,c,0,\infty} & [mm] & 12 \\ \hline \alpha_c & [-] \\ \hline \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

<sup>&</sup>lt;sup>1)</sup>  $N_{Rk,c}$ ,  $N_{Rk,sp}$ ,  $V_{Rk,c}$  and  $V_{Rk,cp}$  – Essential characteristics for concrete failure under static and quasi-static loading according to ETA-17/0979 of 22.04.2024 and EN 1992-4:2018, for  $\tau_{Rk}$  (M24-R-70) ≤ 0,85 ·  $\tau_{Rk}$  (M20-R-70)

| fischer FIS EM Plus dynamic                                                                                                                            |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Performance Essential characteristics under tension / shear fatigue loading; Design method II according to TR 061; stainless steel R property class 70 | Annex C4 |